

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-19201080WTZMW-00H
APPROVED BY	
DATE	Y-1-10PE

- ☐ Preliminary Specification
- Formal Specification

APPROVED BY	CHECKED BY	ORGANIZED BY
Patrick	Lawlite	Kokai

This Specification is subject to change without notice.

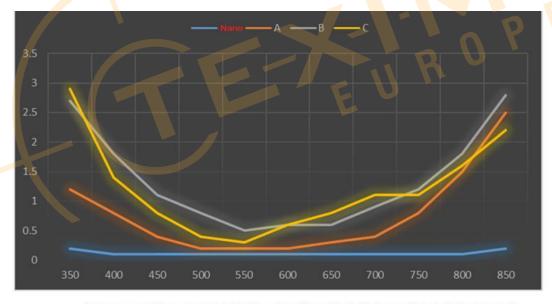
RECORD OF REVISION

Revision Date	Page	Contents	Editor
2024/2/2 2024/5/2	 6 11	New Release Update I _{LED} Update NTSC Add Power consumption	Kokai Kokai
2024/8/22 2024/12/4		New Design Update optical data : Contrast. Color Chromaticity. Update Electrical data : Power consumption LED_PWM frequency	Kokai Kokai
2025/7/14		 Display Timing Add Nano optical lamination film. And note. Update Display Timing Update Outline dimension drawing. 	Kokai
2025/8/15	8	Modify typical value of the Vertical Period Vertical period It 1120 1152 1216 th	Kokai

Date:2025/8/15

1.0 General Descriptions

1.1 Introduction


The LCM is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 15.6 inch diagonally measured active area with FHD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical Stripe and this module can display 16.7M colors(8bit). The TFT-LCD panel used for this module is a low reflection and higher color type.

1.2 Features

- +3.3V LCD Panel Power
- +12V LED back-light Power
- LVDS (2ch) Interface for 1920 RGB x 1080 resolution
- 16.7M Colors(6bit+FRC)
- Mini LED Back-light and Local Diming Control circuit.
 - ♦ High contrast ration > 20000:1
 - ♦ High Color gamut by Blue LED + Quantum dot film technology.
- Green Product (RoHS)

Date: 2025/8/15

Nano optical lamination film.

Nano: The reflectivity under 0.1% in all visible light

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	15.6	Inch
Active Area	344.16 (H) ×193.59 (V)	mm
Pixel Format	1920 (H) x RGB x 1080 (V)	-
Pixel Pitch	0.17925 (H) X 0.17925 (V)	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
White Luminance	1000 (Тур)	cd /m2
Contrast Ratio	(20000 : 1)	-
Input Voltage	3.3	V
Support Color	16.7M(8Bit)	-
Panel Surface	Nano optical lamination film. Hardness : 1H (Note)	-

Note:

- To enhance the visual optical effect of Mini LED, a Nano optical lamination film is added to the surface. This helps reduce surface reflection and achieve the best possible contrast.
- 2. The surface hardness is **1H**. Please be careful not to touch the surface directly with overly hard objects, as this may cause damage.
- 3. Surface Cleaning Instructions
- 3.1 For surface cleaning, please use a microfiber cloth. This is the best choice. Ensure you select a new, high-quality, and unwashed microfiber cloth. It can effectively absorb grease and dust while minimizing friction on the surface.
- 3.2 For fingerprints (primarily oil and sweat stains), a gentle and volatile solvent is required:

 * Distilled or Deionized Water: This is the safest and mildest option. Water-soluble components in fingerprints can be dissolved by water.
- * Small Amount of Isopropyl Alcohol (IPA): For more stubborn oil stains, you can spray a very small amount of IPA (recommended concentration below 70%) onto the microfiber cloth, then gently wipe. IPA evaporates quickly and effectively removes oil.

Important Notes:

Date: 2025/8/15

If unsure, always test on a small, inconspicuous area of the film first to confirm it won't cause damage or leave marks on the material.

Never spray IPA directly onto the film surface. This could cause liquid to seep into edges or gaps, affecting the film's adhesion or other coatings.

Please clean gently, wipe in one direction, and avoid wiping back and forth.

2.0 Absolute Maximum Ratings

2.1 Electrical Absolute max. ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power voltage	V_{DD}	GND=0	-0.3	3.6	V	
LED Power voltage	V_{LED}	GND=0	-0.3	13.0	V	
Input voltage	V_{in}		-0.3	V _{DD} +0.3	V	Note 1

Note1: LED_EN, LED_PWM

2.2 Environmental Absolute max. ratings

Itom	OPERA	OPERATING		AGE	Remark	
Item	MIN	MAX	AX MIN MAX Remark		Remark	
Temperature	-20	70	-30	80	Note2,3,4,5,6	
Humidity	Note1	Note1				
Corrosive Gas	Not Ac	Not Acceptable		ceptable		

Note1 : Ambient temperature Ta <= 40° € : 85% RH max

Ta > 40° C: Absolute humidity must be lower than the humidity of 85%RH at 40° C

Note2 : For storage condition Ta at -20° C < 48h , at 70° C < 100h

For operating condition Ta at -20°C < 100h

Note3 : Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

Note4: The response time will be slower at low temperature.

Note5 : Only operation is guaranteed at operating temperature. Contrast, response time, another display quality are evaluated at +25°C

Note6: This is center of the panel surface temperature, not ambient temperature.

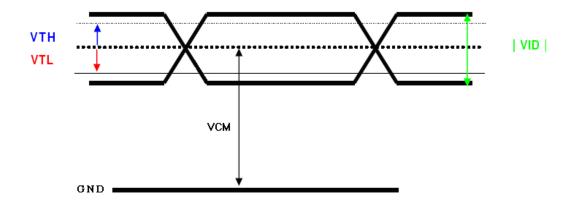
3.0 ELECTRICAL SPECIFICATIONS

3.1 LCD ELECTRONICS SPECIFICATION

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power supply	V_{DD}	3.0	3.3	3.4	V	
LED Driver Power Supply	V_{LED}	11.5	12	12.5	V	
Permissible ripple voltage	VRPC	-	-	100	mVp-p	Note 1
Power Supply current	I _{DD}		(680)	(1100)	mA	Note 2

Note1:

- This product works even if the ripple voltage levels are over the permissible values, but there might be noise on the display image.
- The permissible ripple voltage includes spike noise.
- The load variation influence does not include.


Note2: TFT power supply current. (Will be updated by real sample)

IDD (typ) : V_{DD} =3.0V, f_V =60Hz, Ta=25 $^{\circ}$ C, Checkered flag pattern.

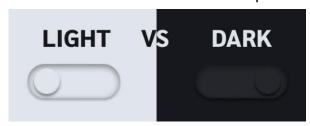
IDD (max) : V_{DD} =3.0V, f_V =60Hz, Ta=25 $^{\circ}$ C, Pattern for maximum current.

3.2 Switching Characteristics of LVDS Receiver

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential Input High Threshold	VTH	-	7-7	100	mV	VCM=1.2V
Differential Input Low Threshold	VTL	-100			mV	
Input current	IIN	-10		+10	uA	
Diffe <mark>renti</mark> al input Voltage	VID	0.2		0.6	V	
Common Mode Voltage Offset	VCM	$\frac{ VID }{2}$	1.25	$2.4 - \frac{ VID }{2}$	V	

Date: 2024/12/4 AMPIRE CO., LTD. 6

3.3 Electrical characteristic of Min LED Back-light

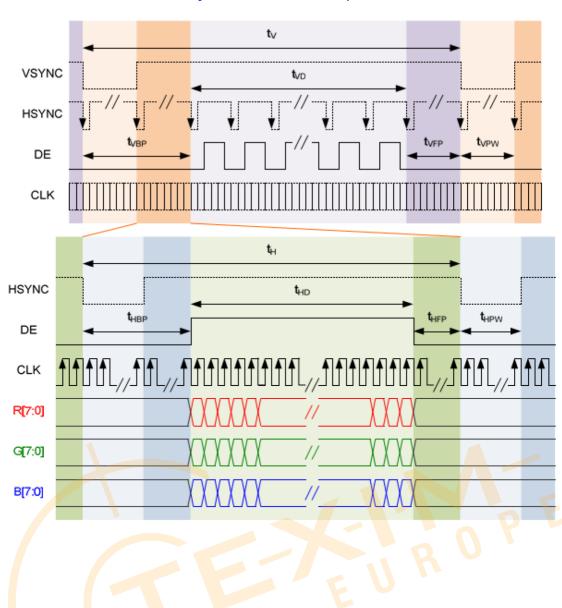

	Power supply and driving control of the Mini LED Back-light							
	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
Input Voltag	е	V_{LED}	11.5	12	12.5	V		
Input Currer	nt	I _{LED}	-	(2.71)	(2.85)	Α	Note 1	
Power cons	umption	P _{LED}		(32.52)	(35.62	W		
	Frequency	Fpwm		2000		Hz	For design	
(PIN9)	Signal Logic High	VIH	(1.2)	1	(3.3)	V	reference only, will be	
LED_PWM	signal logic Low	VIL	0	1	(0.4)	V	updated by real	
	Duty		(5)		100	%	sample.	
				D Back-lighing circuit is				
	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Zone		2 parallel	strings	and 2 serie	s of a LE	D zone		
Partition			5	LED Zone				
Total LED			23	304		pcs		
LED Zone F	orward Current	IF 9				mA	4.5mA/LED	
LED Forwar	d Voltage	VF	VF 5.2 5.8			٧		
LED life time	e			50,000	U.	Hr	Note 1,2,3,4	

Note 1: The LED driver current is dynamic and relative to the display pattern. The value defined as following condition. VLED=12V. Full all white pattern. All the LED chips are turn on by 4.5mA.

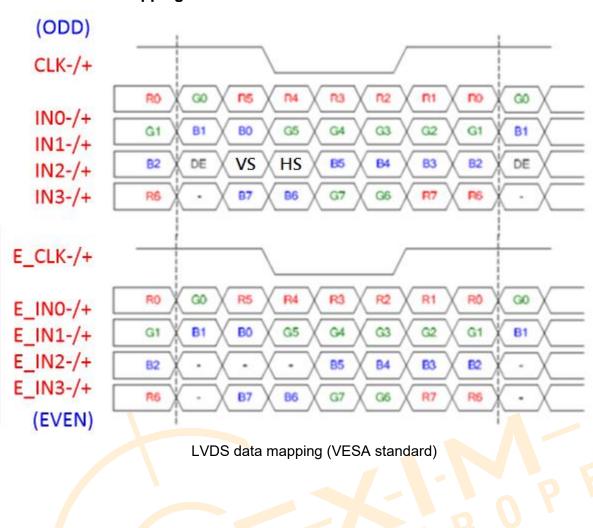
Note 2: If the module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 3: LED life time means brightness goes down to 50% minimum brightness. LED life time is estimated data. Ta=25°C

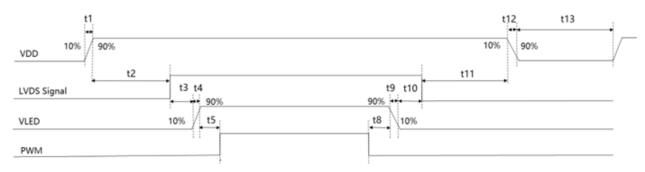
Note 4: Dark UI can enhance the life time and reduce power consumption.


4. Interface Timings

4.1 DISPLAY TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

The "Vertical back porch " & "Vertical pulse width" must followed


Parameter	Symbol	Min	Тур	Max	Unit	Note
CLK frequency	tck	54.0	56.5	57.0	MHZ	
Horizontal blanking time	tHBT	48	86	184	tck	tHBP + tHFP
Horizontal back porch	tHBP	16	20	56	tck	
Horizontal front porch	tHFP	32	66	128	tck	
Horizontal display area	tHD	960	960	960	tck	
Horizontal period	tH	1008	1046	1144	tck	
Horizontal pulse width	tHPW	8	10	32	tck	
Vertical blanking time	tVBT	43	72	136	tH	tVBP + tVFP
Vertical back porch	tVBP	8	8	8	tH	
Vertical front porch	tVFP	35	64	128	tH	
Vertical display area	tVD	1080	1080	1080	tH	
Vertical period	tV	1120	1152	1216	tH	
Vertical pulse width	tVPW	2	2	2	tH	

4.2 LVDS data mapping

4.3 POWER ON/OFF SEQUENCE

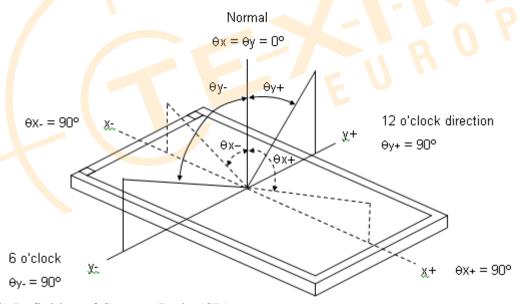
Table 4.3 Power on sequence

Symbol	Min	Тур	Max	Unit	Remark
t1	1	-	3	ms	
t2	-	-	1	ms	
t3	200	•	•	ms	
t4	1	•	•	ms	Note 1
t5	2	-	-	ms	
t8	2	-		ms	
t9	1	•		ms	
t10	200	•	-	ms	
t11	200		-	ms	
t12	1	•	3	ms	
t13	1000	-	•	ms	

Note1: Display at least two black frames before signal off. It is advised that backlight turned on later than display stabled.

Note2: The low level of these signals and analog powers are GND level.

Note3: All of the power and signals should be kept at GND level before power on. If there are residual voltages on them, the LCD might not work properly.

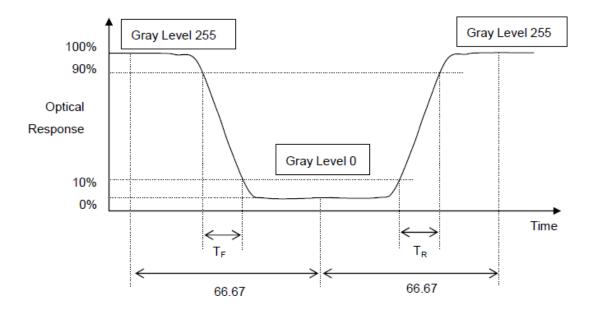

Note4: The power on/off sequence is the first version. It will be updated when the design is fixed.

5.0 Optical Specifications

The optical characteristics are measured under stable conditions as following notes

Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.666			
	Red	Ry			0.305			
	Green	Gx			0.210			
Color Chromaticity	Green	Gy	0 - 0° 0	Тур –	0.790	Typ +		(1)
(CIE 1931)	Blue	Bx	θ _x =0°, θ _Y =0°	0.05	0.149	0.05	-	(1), (5)
(3.2 .33.)	Blue	Ву	CS-2000		0.056			(0)
	\\/\b:t-	Wx	R=G=B=255		(0.330)			
	White	Wy	Gray scale		(0.342)			
Center Luminance of White		L _C		800	1000	-	cd/m ²	(4), (5)
Contras	t Ratio	CR		20000	-	-	-	(2), (5)
Respons	e Time	T_R	θ _x =0°, θ _Y =0°	-	25	40	ms	(3)
Тоороно		T _F	Ο _χ -Ο , Ο _Υ -Ο	-	20	40	1110	(0)
Uniformi	ity	U	$\theta_x=0^\circ, \theta_Y$ =0°	70	75	-	%	(5), (6)
NTSC		-		105	115		%	
	Horizontal	θ_x +		80	88			
Viewing Angle	TIONZONIAI	θ _x -	CR ≧ 10	80	88		Deg.	(1),
Vicwing Angle	Vertical	θ _Y +	OI(<u>=</u> 10	80	88		Dog.	(5)
	VCITICAL	θ_{Y} -		80	88	/		(-)

Note (1) Definition of Viewing Angle (θx , θy):


Note (2) Definition of Contrast Ratio (CR):

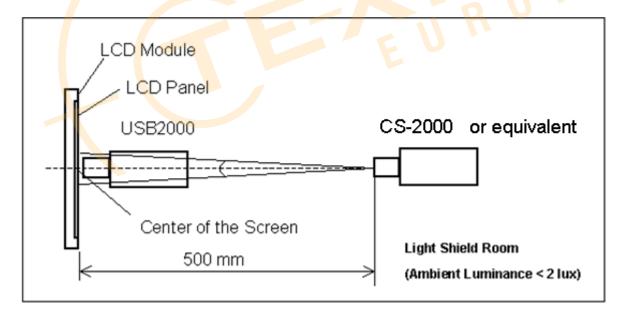
Date: 2024/12/4

The contrast ratio can be calculated by the following expression. Contrast Ratio (CR) = L255 / L0 L255: Luminance of gray level 255 L 0: Luminance of gray level 0 CR = CR (5)

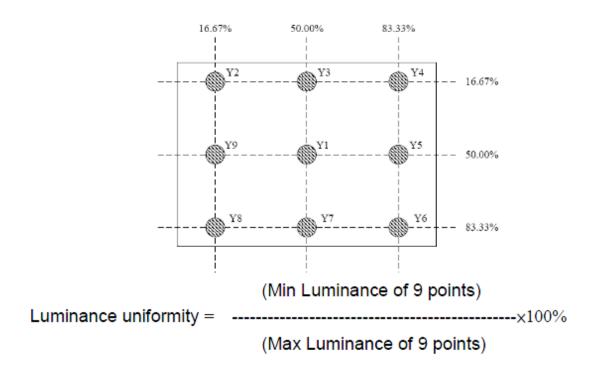
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 255 at center point $L_C = L(5)$

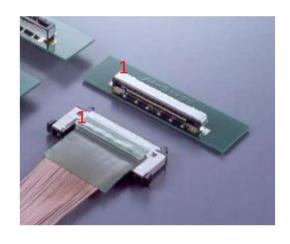
L (x) is corresponding to the luminance of the point X at Figure in Note (6).


Note (5) Measurement Setup:

Date: 2024/12/4

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6) Definition of White Variation



6. Interface Connections

Connecter : JAE FI-RE51S-HF or Equivalent				
Mating connecter : FI-RE51HL				
Pin	Name	Description		
1~7	VLED	Power Supply input for LED back-light driving circuit. (+12V)		
8	LED_EN	No Function. Keep it no connection.		
9	LED_PWM	PWM signal input for dimming.		
10	GND	Ground		
11	GND	Ground		
12	INO-	ODD pixel -LVDS differential data input (R0~R5,G0)		
13	IN0+	ODD pixel +LVDS differential data input (R0~R5 G0)		
14	IN1-	ODD pixel -LVDS differential data input (G1~G5,B0,B1)		
15	IN1+	ODD pixel +LVDS differential data input (G1~G5,B0,B1)		
16	IN2-	ODD pixel -LVDS differential data input (B2~B5,-,-,DE)		
17	IN2+	ODD pixel +LVDS differential data input (B2~B5,-,-,DE)		
18	GND	Ground		
19	CLK-	ODD pixel -LVDS differential Clock input		
20	CLK+	ODD pixel +LVDS differential Clock input		
21	GND	Ground		
22	IN3-	ODD pixel -LVDS differential data input (R6~R7,G6~G7,B6~B7)		
23	IN3+	ODD pixel +LVDS differential data input (R6~R7,G6~G7,B6~B7)		
24	VDD	Power Supply input for TFT Panel driving circuit. (+3.3V)		
25	VDD	Power Supply input for TFT Panel driving circuit. (+3.3V)		
26	GND	Ground		
27	GND	Ground		
28	E_IN0-	EVEN pixel -LVDS differential data input (R0~R5,G0)		
29	E_IN0+	EVEN pixel +LVDS differential data input (R0~R5 G0)		
30	E_IN1-	EVEN pixel -LVDS differential data input (G1~G5,B0,B1)		
31	E_IN1+	EVEN pixel +LVDS differential data input (G1~G5,B0,B1)		
32	E_IN2-	EVEN pixel -LVDS differential data input (B2~B5,-,-,DE)		
33	E_IN2+	EVEN pixel +LVDS differential data input (B2~B5,-,-,DE)		
34	GND	Ground		
35	E_CLK-	EVEN pi <mark>xel</mark> -LVDS differential Clock input		
36	E_CLK+	EVEN pixel +LVDS differential Clock input		
37	GND	Ground		
38	E_IN3-	EVEN pixel -LVDS differential data input (R6~R7,G6~G7,B6~B7)		
39	E_IN3+	EVEN pixel +LVDS differential data input (R6~R7,G6~G7,B6~B7)		
40~46	GND	Ground		
47~51	VLED	Power Supply input for LED back-light driving circuit. (+12V)		

Note 1st pin location:

7. Reliability Test

The reliability test items and its conditions are shown below.

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	50°C, 80% RH , 240 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 70°C (30min) , 100 cycles	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

- Note 1 : Condensation of water is not permitted on the module.
- Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C), 45-65%RH).
- Note 3: The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note 4: All the reliability tests should be done without protective film on the module.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

8. GENERAL PRECAUTION

8.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

8.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

8.3 Breakage of LCD Panel

- (1) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury, when the glass is broken.

8.4 Electric Shock

Date: 2024/12/4

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

8.5 Absolute Maximum Ratings and Power Protection Circuit

- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) It's recommended to employ protection circuit for power supply.

8.6 Operation

- (1) Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- (2) Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

8.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

8.8 Static Electricity

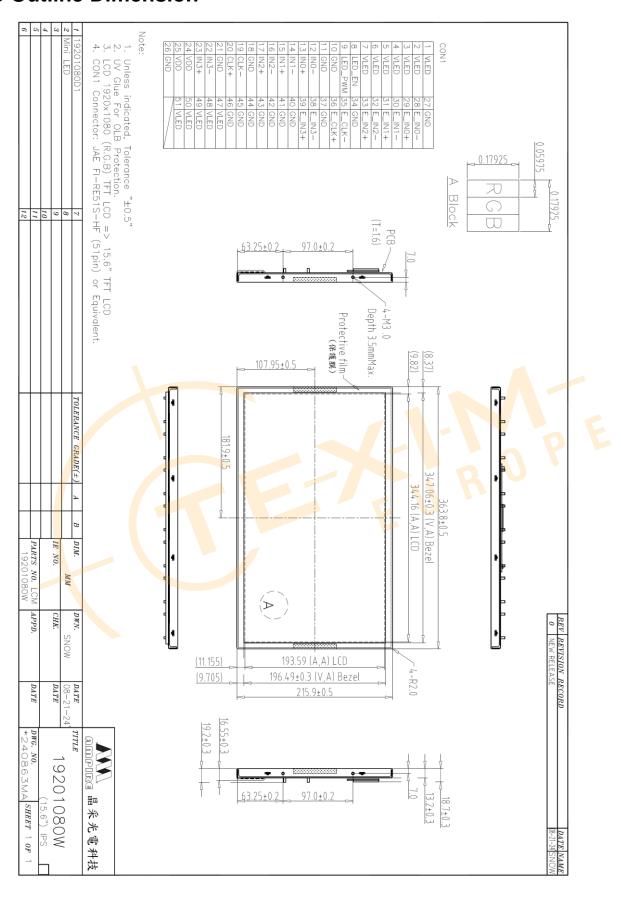
- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

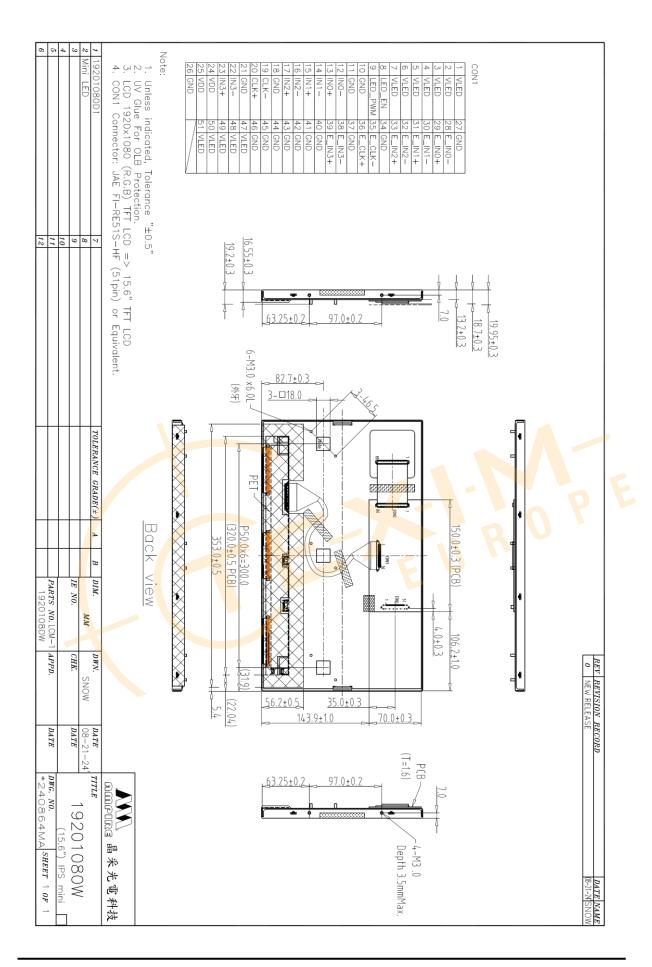
8.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

8.10 Disposal

When disposing LCD module, obey the local environmental regulations.


8.11 Others


Date: 2024/12/4

Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

9 Outline Dimension

Date: 2025/8/15

10 Package T.B.D

Date: 2025/8/15

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Texim Europe - contact details

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T: +31 (0)53 573 33 33 E: info@texim-europe.com Homepage: www.texim-europe.com

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany

Bahnhofstrasse 92 D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria

Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 E: austria@texim-europe.com

Nordic

Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Italy

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com