

4.2 inch E-paper Display Series

WAA0420A2AAB5NXXX000

Product Specifications

Customer	Standard
Description	4.2" E-PAPER DISPLAY
Model Name	WAA0420A2AAB5NXXX000
Date	2025/02/14
Revision	1.0

Design Engineering			
Approval	Check	Design	

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	
	6.4.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	28
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
	14.2 Normal Operation Reference Program Code	34
15.	Inspection condition	35
	15.1 Environment	35
	15.2 Illuminance	35
	15.3 Inspect method	35
	15.4 Display area	35
	15.5 Inspection standard	36
	15.5.1 Electric inspection standard	36
	15.5.2 Appearance inspection standard	37
16.	Packaging	39
17.	Precautions	40

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	02.14.2025	New Creation	ALL	

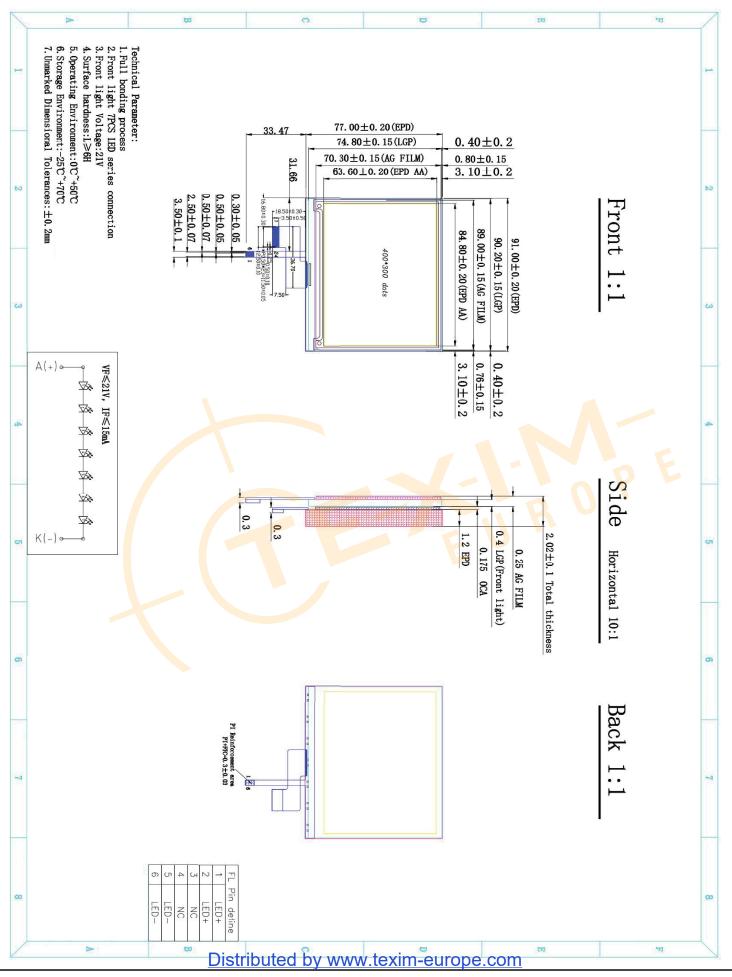
1. Over View

WAA0420A2AAB5NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 4.2inch active area contains 400×300 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

- 400×300 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator

• On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage


- I2C signal master interface to read external temperature sensor
- Support partial update mode
- Built-in temperature sensor

3.Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	400(H)×300(V)	Pixel	Dpi:120
Active Area	84.8×63.6	mm	
Pixel Pitch	0.212×0.212	mm	
Pixel Configuration	Rectangle		
Outline Dimension	91 (H)×77 (V) ×2.02(D)	mm	
Weight	16.1±0.3	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 54
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	9
14	SD <mark>A</mark>	I/O	Serial Data pin (SPI)	
15	VDD <mark>I</mark> O	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	VSS	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C =Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

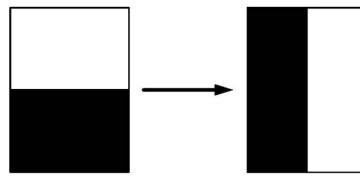
6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C
Storage Temp range	TSTG	-25 to+70	
Optimal Storage Temp	TSTGo	23±2	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: 1. Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C


Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V _{ss}	-		-	0	-	V
Logic supply voltage	V _{CI}	_	VCI	2.2	3.3	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	_	-	0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	-	-	-	-	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	_	0.1 V _{CI}	V
Typical power	P _{TYP}	V _{CI} =3.0V	-	-	18.48	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	-	-	0.003	0.0165	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	5.6	-	mA
Full/Fast/Partial update	_	25 °C	-	-	2/1.5/0.3	-	sec
4 Gray update	-	25 °C	_	_	2	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	2	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	/		R ₂ C	5	uA

Notes:

1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR DISPLAY.

Distributed by www.texim-europe.com

6.3AC Characteristics

6.3.1 MCU Interface Selection

The IC can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

	Pin Name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	H	RES#	CS#	L	SCL	SDA

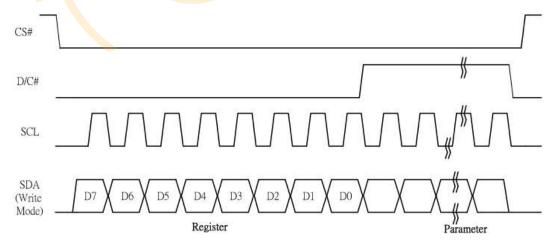
Table 6-1 : Interface pins assignment under different MCU interface

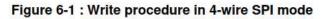
Note : (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2 : Control pins status of 4-wire SPI


Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	Ŷ	Command bit	L	L
Write data	1	Data bit	Н	L


Note:

(1) L is connected to VSS and H is connected to VDDIO

(2) stands for rising edge of signal

(3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

6.3.3 MCU Serial Peripheral Interface (3-wire SPI)

MCU Serial Peripheral Interface (3-wire SPI) The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/ C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	ſ	Command bit	Tie LOW	L
Write data	Ŷ	Data bit	Tie LOW	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) \uparrow stands for rising edge of signal

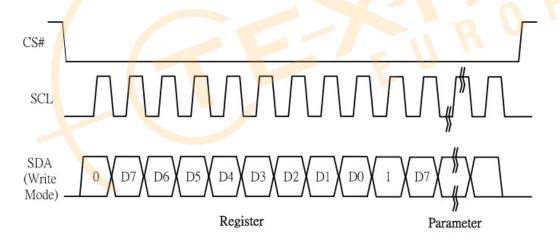
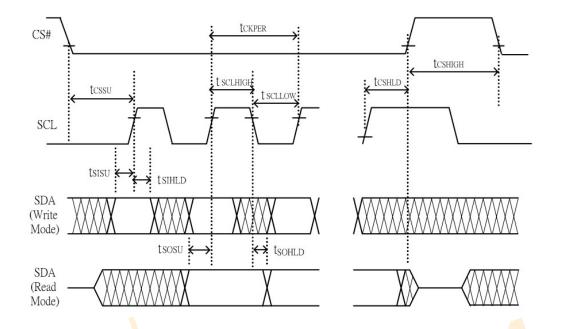



Figure 6-3 : Write procedure in 3-wire SPI

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Write mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Write Mode)	() 1	-	20	MHz
Time CS# has to be low before the first rising edge of SCLK	TBD			ns
Time CS# has to remain low after the last falling edge of SCLK	TBD	-	-	ns
Time CS# has to remain high between two transfers	TBD	-	-	ns
Part of the clo <mark>ck</mark> period where SCL has to remain high	TBD	-	-	ns
Part of the clock period where SCL has to remain low	TBD	-	-	ns
Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD		-	ns
Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	TBD	355	-	ns
	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	SCL frequency (Write Mode) - Time CS# has to be low before the first rising edge of SCLK TBD Time CS# has to remain low after the last falling edge of SCLK TBD Time CS# has to remain high between two transfers TBD Part of the clock period where SCL has to remain high TBD Part of the clock period where SCL has to remain low TBD Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL TBD	SCL frequency (Write Mode) - Time CS# has to be low before the first rising edge of SCLK TBD Time CS# has to remain low after the last falling edge of SCLK TBD Time CS# has to remain high between two transfers TBD Time CS# has to remain high between two transfers TBD Part of the clock period where SCL has to remain high TBD Part of the clock period where SCL has to remain low TBD Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL TBD	SCL frequency (Write Mode)-20Time CS# has to be low before the first rising edge of SCLKTBD-Time CS# has to remain low after the last falling edge of SCLKTBD-Time CS# has to remain high between two transfersTBD-Part of the clock period where SCL has to remain highTBD-Part of the clock period where SCL has to remain lowTBD-Time SI (SDA Write Mode) has to be stable before the next rising edge of SCLTBD-

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequ <mark>ency</mark> (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD	-	-	ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	8	ns
tcshigh	Time CS# has to remain high between two transfers	TBD	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	TBD	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	TBD	TBD	-	ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	TBD	TBD	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

om								-					NAMES OF A			
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti				
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti		1 000 14	V	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀], 300 MU tting as (A		
0	1		0	0	0	0	0	0	0	A ₈		MUX Gale	5 11165 56	ung as (A	[0.0] + 1).	
0	1		0	0	0	0	0	B ₂	Bı	Bo		Gate scar B[2]: GD	elects the 1st output Gate			
												GD=0 [PC G0 is the output sec GD=1, G1 is the	DR], 1st gate o quence is 1st gate o	output cha G0,G1, G output cha	nnel, gate	
												output sec	quence is	G1, G0, C	33, G2,	
												SM=0 [PC	DR], 62, G32	order of ga 299 (left ar	te driver. Id right gat	
												SM=1,	,			
												G0, G2, G	64G29	4, G1, G3	,G299	
														n from G0 G2 <mark>99 to</mark> G		
				2,												
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	driving vo	Itage		
0	1		0	0	0	A ₄	A3	A ₂	A ₁	Ao	Control	A[4:0] = 0				
						~								OV to 20V		
												A[4:0]	VGH	A[4:0]	VGH	
												00h	20	0Dh	15	
												03h	10	0Eh	15.5	
												04h	10.5	0Fh	16	
												05h	11	10h	16.5	
												06h	11.5	11h	17	
												07h	12	12h	17.5	
												08h	12.5	13h	18	
												07h	12	14h	18.5	
												08h	12.5	15h	19	
												09h	13	16h	19.5	
												0Ah	13.5	17h	20	
												0Bh	14	Other	NA	
						1					1	0Ch				

Com	man	d Tal	ole											
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Source	e Driving	voltage	Set Source driving voltage
0	1		A ₇	A6	A5	A4	Аз	A ₂	A ₁	Ao	Contro	ol –		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B7	B6	Bs	B4	B ₃	B ₂	B ₁	Bo	-			B [7:0] = A8h [POR], VSH2 at 5V.
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C1	Co	-			C[7:0] = 32h [POR], VSL at -15V Remark: VSH1>=VSH2
] = 1,		07	08	05	04	03		7]/B[7		<u> </u>			C[7] = 0,
		Itage	setti	ng fro	om 2.	.4V to	S					e setting	from 8.8	
8.6	V				_			to	17V		_			
	B[7:0] 8Eh		1/ VSH 2 2.4		8[7:0] Eh	2.1	/VSH2 .6		A/B[7:0] 21h	VS	8.8	A/B[7:0] 37h	VSH1/VSH 13	
	8Fh		2.4		Fh		.0	-	23h		0.0 9	37h 38h	13.2	0Ah -5 0Ch -5.5
	90h	1	2.6	В	0h	5	.8		24h	81	9.2	39h	13.4	0Eh -6
-	91h	-	2.7		1h		.9	_	25h		9.4	3Ah	13.6	10h -6.5
	92h 93h		2.8 2.9	<u> </u>	12h 13h	1.2	6 . 1	-	26h 27h	-	9.6 9.8	3Bh 3Ch	13.8 14	12h -7
	94h		3		i4h		.2		28h		10	3Dh	14.2	14h -7.5 16h -8
_	95h	1 :	3.1		5h		.3		29h		10.2	3Eh	14.4	
_	96h	-	3.2		6h		.4		2Ah		10.4	3Fh	14.6	1Ah -9
_	97h 98h		3.3 3.4		17h 18h		.5		2Bh 2Ch	1	10.6 10.8	40h 41h	14.8 15	1Ch -9.5
-	99h	_	3.5	<u> </u>	i9h		.7		2Dh		11	41h 42h	15.2	1Eh -10
	9Ah		3.6		Ah		.8		2Eh		11.2	43h	15.4	20h -10.5 22h -11
	9Bh 9Ch		3.7 3.8		Bh Ch	-	.9 7	1	2Fh 30h	-	11.4 11.6	44h 45h	15.6 15.8	22h -11.5
	9Dh	_	3.9		Dh	_	/ .1	-	30h	-	11.8	45h	15.8	26h -12
	9Eh	_	4		Eh		.2		32h	-	12	47h	16.2	28h -12.5
	9Fh	-	4.1		ßFh	1.	.3		33h		12.2	48h	16.4	2Ah -13
	A0h A1h	1.00	4.2 4.3		0h 1h		.4	-	34h 35h	-	12.4 12.6	49h 4Ah	16.6 16.8	2Ch -13.5 2Eh -14
-	A2h	-	4.4	_	2h	_	.6		36h	-	12.8	4Bh	10.8	30h -14.5
	A3h	1 -	4.5	C	3h		.7					Other	NA	32h -15
	A4h		4.6		4h	-	.8							34h -15.5
	A5h A6h		4.7 4.8		5h 6h	1.11	.9 8							36h -16 38h -16.5
-	A7h		4.9		7h		.1							36h -10.5 3Ah -17
	A8h	- 11	5		8h	-	.2							Other NA
-	A9h AAh	_	5.1 5.2		9h Ah	V	.3							
_	ABh	-	5.3	_	Bh	-	.4							
	ACh	1 :	5.4		Ch	8	.6							
	ADh	1 :	5.5	0	ther	N	IA							
						_					_			
0	0	08	0	0	0	0	1	0	0	0	Initial (Code Set	tina	Program Initial Code Setting
												Program		
														The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during operation.
				<u>.</u>		_		_						
0	0	09	0	0	0	0	1	0	0	1	Write	Register f	or Initial	Write Register for Initial Code Setting
0	1		0 A7		A ₅	A ₄	A ₃		A1	A ₀		Setting	si muai	Selection
			-	A ₆	-			A ₂						A[7:0] ~ D[7:0]: Reserved
0	1		B7	B ₆	Bs	B ₄	B ₃	B ₂	B1	Bo				Details refer to Application Notes of Initial
0	1		C7	C ₆	C5	C4	C ₃	C2	C1	Co				Code Setting
0	1		D7	D ₆	D5	D4	D3	D2	D1	D₀				
0	0	0A	0	0	0	0	1	0	1	0			ior Initial	Read Register for Initial Code Setting
											Code	Setting		

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	00	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase 3
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	-	A[7:0] -> Soft start setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	-	= 8Bh [POR] B[7:0] -> Soft start setting for Phase2
0	1	2	0	0	D ₅	D ₄	D ₃	D ₂	D ₁	Do	-	= 9Ch [POR]
U			U		05	04	03	02				C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit]
												0000 ~ NA 0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1
												Bit[1:0] [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]: Description
												00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
•	•		•	•	•		•	•	•			
0	0	11	0	0	0	1	0	0 A2	0 A1	1 A0	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM
												Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in
											E	the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode
												During operation, BUSY pad will output high. Note: RAM are unaffected by this
												command.

Com	man	d Ta	ble			ç					**************************************	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A 4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A1	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] : VCI level Detect 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A7	A ₆	A ₅	A ₄	A ₃	0 A2	A 1	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0 A7	0 A6	0 A5	1 A4	1 A3	0 A2	1 A1	0 A0	Temperature Sensor Control (Write to temperature register)	Write to temperature register. A[7:0] = 7Fh [POR]
0	0	1B	0 A7	0 A6	0 A5	1 A4	1 A3	0 A2	1 A1	1 Ao	Temperature Sensor Control (Read from temperature register)	Read from temperature register.

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B1	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇		C ₅	C ₄	C ₃	C ₂			sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
J	*		07		0.0		00					
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer 01 Address + pointer + 1st parameter
												10 Address + pointer + 1st parameter +
												2nd pointer
												Al[5:0] – Pointer Setting
												$B[7:0] - 1^{st}$ parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												After this command initiated, Write
												Command to external temperature sensor
												starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is
												located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel
												images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A ₇	A ₆	A ₅	A ₄	A3	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR]
	- 11											B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		
												A[7:4] Red RAM option 0000 Normal
												0100 Normal 0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content

Com	man	d Ta	ble								<u></u>		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0 1	22	0 A7	0 A ₆	1 A5	0 A4	0 A3	0 A2	1 A1	0 A0	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal Enable Analog Display with DISPLAY Mode 2 Disable Analog Disable OSC	CF
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal >Enable Analog > Load temperature value > DISPLAY with DISPLAY Mode 2 > Disable Analog > Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	× 1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
	i		13 (14)								15	
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1 st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1
	1	1										Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0	0	1	0	1 A3	0 A2	0 A1	1 Ao	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0		0.0	0	0	4		4	0		0		
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

Com	man	d Ta	ble												
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		
0	0 1	2C	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	0 A1	0 <u>A</u> 0	Write VCOM register		OM regist 00h [POR]		ICU interface
						Con Adda						A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
			34.0	1.812		1923					The manufacture of the source of the	1		1980 - 186 - S	e-7 1 1 %
)	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A 7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Option	A[7.0].	VCOM OT	D Calasti	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			and 0x37,		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀]	(0011111	and oxor,	Dyterty	
1	1		D ₇	D ₆	D ₅	D4	D ₃	D ₂	D1	Do			VCOM Re		
1	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	Eo		(Comm	and 0x2C)		
1	1	· · · · · · · ·	F 7	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	-	017.01	017.01. D		
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G1	Go			G[7:0]: Dis and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		[5 bytes		Dyte D to	byter)
-			1 1 1			2.0									
1	1		17	6	15	4	13	2	11	lo			K[<mark>7:0]</mark> : Wa		
1	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J ₁	Jo			and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K4	K ₃	K ₂	K ₁	K ₀		[4 bytes	5]		
2	0	05	0	0		0					Ulass ID Days 1	Delica	D.t. II		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read				ed in OTP: Byte A and
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	4		[10 bytes]	וט (הטס,	Dyte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		2,00)	[
1	1		C ₇	C ₆	C 5	C ₄	C ₃	C ₂	C1	C ₀]				
1	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E7	E ₆	E ₅	E4	Eз	E ₂	E1	Eo	1				
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	1				
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G1	Go	1				
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-				
_	1		2	21			12	12	1		4				
1	1000		7	6	15	4	13	12	11	lo	4				
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J1	Jo					

Com	man	d Ta	ble									
		Hex		D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A5	A4	0	0	Aı	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
U	U	30	U	U		l	0	0	U		Program WS OTP	The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0		01	0				0	0				
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
					Ц							
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[227 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR
0	1		B7	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		and XON[nXY]
0	1			:	:	:	:	:	1	:		Refer to Session 6.7 WAVEFORM
0	1		2.			•	(**)		•	*		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note.
							8					BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	35	0 A ₁₅	172255		A ₁₂	10-0	A ₁₀	0 A9	A ₈	UNU SIAIUS MEAD	A[15:0] is the CRC read out value
1	1		A15	A14	A13	A12 A4	A11 A3	A10	Ag A1	A ₈		
-				, 10	110	1 14	, 10	112		1.0	I	

Com	ommand Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1.
23									n.			Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	Co		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	Eo	-	D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀	-	0: Display Mode 1 1: Display Mode 2
0	1		G7 H7	G ₆ H ₆	G ₅ H ₅	G ₄ H ₄	G ₃ H ₃	G ₂ H ₂	G ₁ H ₁	G₀ H₀	-	1: Display Mode 2
0	1		17		15	4	13	12	1	lo	-	F[6]: Ping-Pong for Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J	Jo	-	0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
						-						loi Display Node I
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C7			C ₄	C ₃	C ₂	C ₁	Co		OTP
0	1		D7 E7	D ₆ E ₆	D ₅ E ₅	D ₄ E ₄	D ₃ E ₃	D ₂ E ₂	D ₁ E ₁	Do Eo		
0	1		F7	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-	
0	1		H ₇	H ₆	H5	H ₄	H ₃	H ₂	H ₁	Ho	-	
0	1		I 7	6	1 5	I 4	13	2	11	lo]	
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
0	0	39	0	0	4	1	1	0	0	4	OTD program made	OTP program mode
0	1	59	0	0	1 0	0	0	0	A ₁	1 Ao	OTP program mode	A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	HIGH AND A COMPANY AND A REAL PROPERTY OF	r waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	0	A ₁	Ao	1		[POR], set VBD as HIZ.
	5		~/	70	~ 5	A 4	0						ct VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												L	
												A [1:0] GS Tr	ansition setting for VBD
												VBD Level S	
												00b: VCOM ;	
												10b: VSL; 11	
												A[1:0]	VBD Transition
												00	LUT0
												01 10	LUT1 LUT2
												11	LUT3
										I			EOTO
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LL	IT and
0	1	01	A ₇	A6	A ₅	A ₄	A ₃	A ₂	A ₁	A		Set this byte	
0			~/	Ab	A 5	A 4	A 3	R 2	A	~ 0			
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM C	Intion
		41	-	-			-	0			Read HAW Option	A[0] = 0 [POF	
0	1		0	0	0	0	0	0	0	A ₀		0 : Read RAM	d corresponding to RAM0x24
													A corresponding to RAM0x26
0	0	<mark>4</mark> 4	0	1	0	0	0	1	0	0	Set RAM X - address		tart/end positions of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	All and the second s	ess in the X direction by an
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1	address unit	TOR RAM
				0.0000								AIS:01: XSAI	5:0], XStart, POR = 00h
													5:0], XEnd, $POR = 31h$
									2				
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the s	tart/end positions of the
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A	Start / End position		ess in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit	
0			B ₇		B ₅	B ₄			B ₁		-	A10.01 VOA	
	1		- 25	B ₆			B ₃	B ₂	82.54	B ₀	4		3:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈			3:0], YEnd, POR = 12Bh
											r		
0	0	46	0	1	0	0	0	1	1	0			ED RAM for Regular Pattern
0	1		A 7	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 00h	[POR]

Description A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accordin to Gate A[6:4] Height A[6:4] Height 000 8 001 16 010 32 011 64 A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width 001 16 101 256 011 64 A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width 001 16 001 16 010 32 011 64 011 64 011 64 011 64 011 64 011 64 011 64 011 64 011 64 </th
A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accordir to Gate A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordir to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
Step of alter RAM in Y-direction accordir to Gate A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordir to Source A[2:0] Width A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
to Gate A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordir to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordir to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA
011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width A[2:0] Width A[2:0] Width Description Description A[2:0] Width A[2:0] Width Description Description 000 8 100 128 Description Description 001 16 101 256 Description Description Description 010 32 110 400 Description Description Description Description BUSY pad will output high during BUSY pad will output high during Description Descrint
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordin to Source A[2:0] Width A[2:0] Width 000 8 100 100 128 001 16 101 010 32 110 011 64 111 NA BUSY pad will output high during
Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during 100 100 100
000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during 100 100 100
001 16 101 256 010 32 110 400 011 64 111 NA
001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during 100 100 100
010 32 110 400 011 64 111 NA BUSY pad will output high during
011 64 111 NA BUSY pad will output high during
BUSY pad will output high during
AM for Auto Write B/W RAM for Regular Patter
A[7:0] = 00h [POR]
A[7]: The 1st step value, POR = 0
A[6:4]: Step Height, POR= 000
Step of alter RAM in Y-direction accordi
to Gate
A[6:4] Height A[6:4] Height
000 8 100 128
001 16 101 256
010 32 110 300
011 64 111 NA
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accordi
to Source
A[2:0] Width A[2:0] Width
000 8 100 128
001 16 101 256
010 32 110 400
011 64 111 NA

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
												A[5:0]: 00h [POR].
0	0	4F	0	4	0	0	4	4	4	4	Set RAM Y address	Make initial settings for the RAM Y address
0	1	41	A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A	counter	in the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈	1	A[8:0]: 000h [POR].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

8.Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

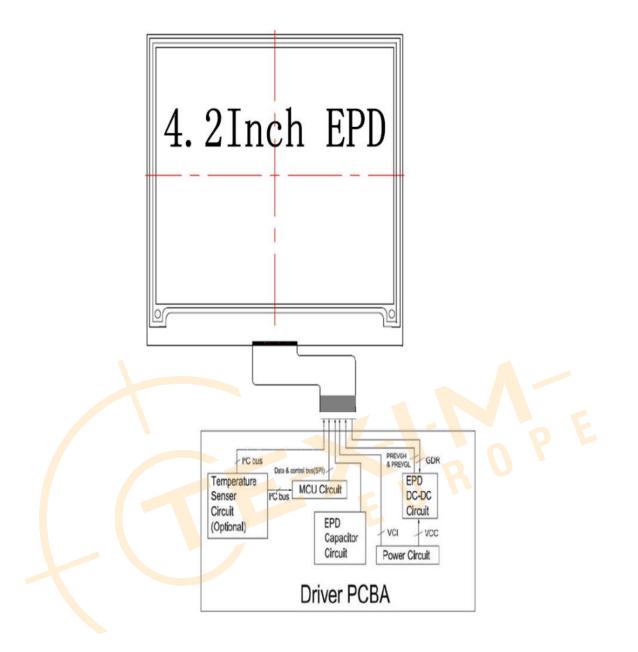
Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

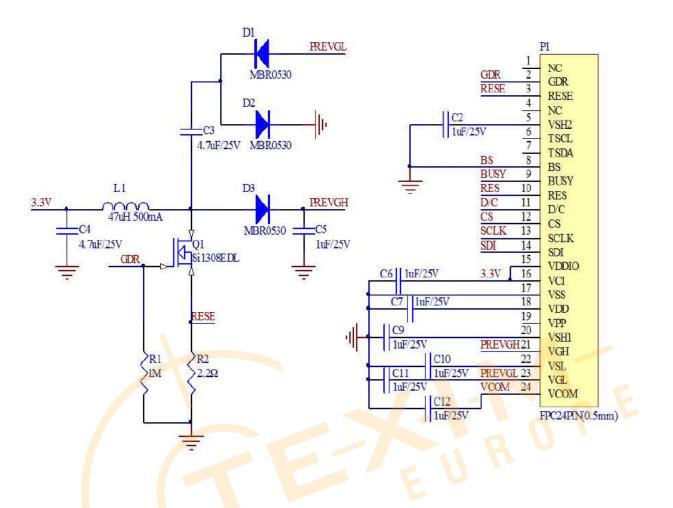
8-1. Luminance meter: Eye-One Pro Spectrophotometer.

- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements


	•							
	Warning							
The display glass may break when it is dropped or bumped on a hard surface.								
Handle with care. Should the display break, do not touch the electrophoretic								
material. In case of <mark>c</mark> ontact with	<mark>h ele</mark> ctrophoretic material, wash with water and							
soap.								
	Caution							
	pe exposed to harmful gases, such as acid and							
alkali gase <mark>s</mark> , which corrode electronic components. Disassembling the display								
module.								
Disassembling the display modu	le can cause permanent damage and invalidates							
the warranty agreements.								
, .								
Observe general precautions that are common to handling delicate electronic								
components. The glass can break and front surfaces can easily be damaged.								
Moreover the display is sensitive to static electricity and other rough								
environmental conditions.								
Da	ata sheet status							
Product specification T	This data sheet contains final product specifications.							
L	imiting values							
Limiting values given are in acco	ordance with the Absolute Maximum Rating							
System (IEC								
134) Stress above one or more	of the limiting values may cause permanent							
	e stress ratings only and operation of the							
-	conditions above those given in the							
	pecification is not implied. Exposure to limiting							
values for extended periods ma								
•	ication information							
	s given, it is advisory and does not form part of the							
specification.	s given, it is advisory and does not form part of the							
· · · · · · · · · · · · · · · · · · ·	hy www.texim_europe.com							

10.Reliability test

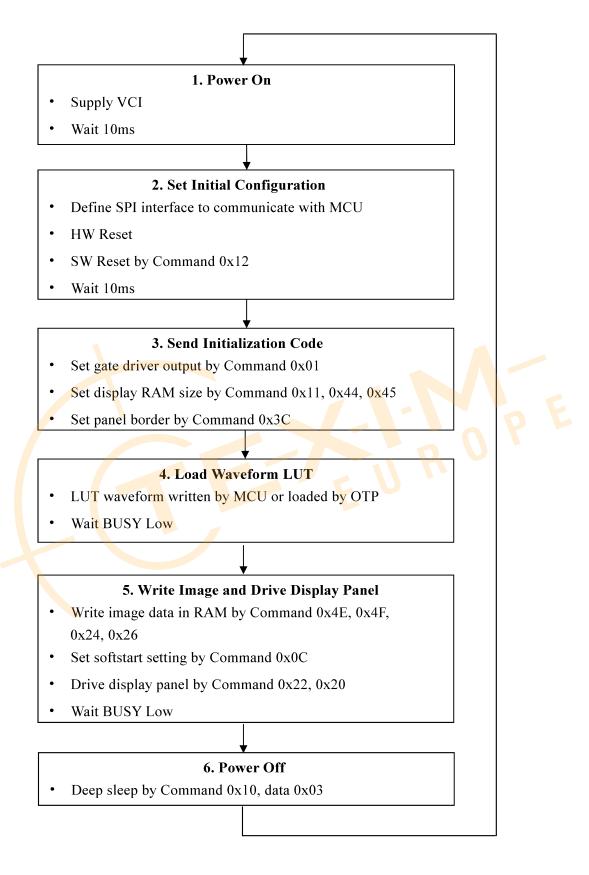

NO	Test items	Test condition
1	Low-Temperature Storage	$T = -25^{\circ}C$, 240 h Test in white pattern
2	High-Temperature Storage	T = +70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	$T = +50^{\circ}C, RH = 30\%$,240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=+40°C, RH=90%,168h
6	High Temperature, High Humidity Storage	T=+60°C, RH=80%,240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell,not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display,no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display,including IC and FPC area)

Note: Put in normal temperature for 1 hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

Part Name	Requirements for spare part					
C1-C12	0603/0805; X5R/X7R;Voltage Rating:≥25V					
R1、R2	0603/0805;1% variation,≥0.05W					
D1—D3	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA					
01-03	3)Forward voltage ≤430mV					
01	Si1308EDL:1)Drain-Source breakdown voltage≥30V					
Q1	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ					
L1	refer to NR3015: Io=500mA(max)					
P1	24pins,0.5mm pitch					


13. Matched Development Kit

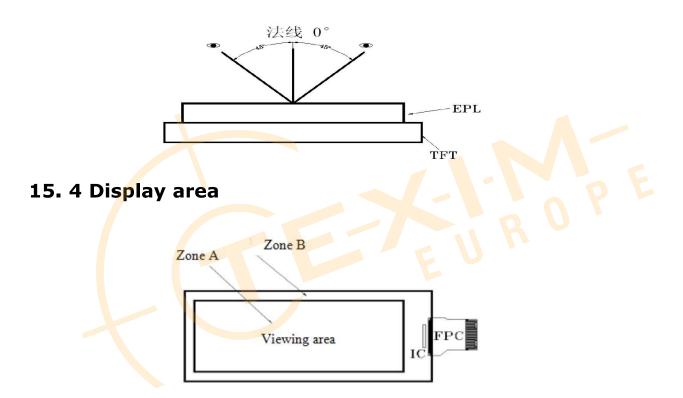
Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

14. Typical Operating Sequence 14.1 Normal Operation Flow

14.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT		
	POWER ON			
delay	10ms			
PIN CONFIG				
RESE#	low	Hardware reset		
delay	200us			
RESE#	high			
delay	200us			
Read busy pin		Wait for busy low		
Command 0x12		Software reset		
Read busy pin		Wait for busy low		
Command 0x01	Data0x2b 0x01 0x00	Set display size and driver output control		
Command 0x11	Data 0x01	Ram data entry mode		
Command 0x44	Data 0x00 0x31	Set Ram X address		
Command 0x45	Data 0x2b 0x01 0x00 0x00	Set Ram Y address		
Command 0x3C	Data 0x01	Set border		
	LOAD IMAGE AND	JPDATE		
Command 0x4E	Data 0x00	Set Ram X address counter		
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter		
Command 0x24	Data 0xXX, 0xXX	Write B/W image data into to Register		
		0x24 RAM		
Command 0x4E	Data 0x00	Set Ram X address counter		
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter		
Command 0x26	Data 0xXX, 0xXX	Write Red image data into Register 0x26		
		RAM		
Command 0x20				
Read busy pin				
Command 0x10	Data 0X01	Enter deep sleep mode		
	POWER OF	F		


15. Inspection condition 15. 1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

15. 2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45°surround.

15.3 Inspection method

15. 5 Inspection standard

15. 5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope	
1	Display	Display complete Display uniform	MA			
2	Black/White spots	$D \le 0.25 \text{mm}$, Allowed $0.25 \text{mm} < D \le 0.4 \text{mm} \cdot N \le 3$, and $D = 0.4 \text{mm} \cdot N \le 3$, and $D = 0.4 \text{mm} \cdot N \le 3$, and 0.4 mm < D Not Allow	MI	Visual inspection		
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm, W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow		Visual/ Inspection card	Zone A	
4	Ghost image	Allowed in switching process	MI	Visual inspection		
5	Flash spots/ Larger FPL size	Flash spots in switching,Allowed FPL size larger than viewing area,Allowed	MI	Visual/ Inspection card	Zone A Zone B	
6	Display wrong/Missing	wrong/Missing correct Shortcircuit/ Circuit break/ Not Allow		Visual inspection	Zone A	
6						

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	$\begin{array}{c} & \downarrow \\ & D \leq 0.25 \text{mm}, \text{ Allowed} \\ & 0.25 \text{mm} < D \leq 0.4 \text{mm}, \text{ N} \leq 3 \\ & D > 0.4 \text{mm}, \text{ Not Allow} \end{array}$	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	x ≤ 3 mm, Y ≤ 0.5 mm x ≤ 3 mm, Y ≤ 0.5 mm x ≤ 3 mm $\leq X$ or 2mm $\leq Y$ Allow \downarrow Widh \downarrow Leight W ≤ 0.1 mm, L ≤ 5 mm, n ≤ 2 Edge crown: X ≤ 0.3 mm, Y ≤ 3 mm	MI	Visual / Microscope	Zone A Zone B
5	Substrate color difference	Allowed			
6	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

7	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
8	Edge Adhesives height/FPL/ Edge adhesives bubble	Edge Adhesives height \leq Display surface Edge adhesives seep in $\leq 1/2$ Margin width FPL tolerance ± 0.3 mm Edge adhesives bubble: bubble Width $\leq 1/2$ Margin width; Length ≤ 0.5 mm. n ≤ 3	MI	Visual / Ruler	Zone B
9	Protect film	Surface scratch but not effect protect function, Allow		Visual Inspection	

16. Packing

TBD

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T:	+31 (0)53 573 33 33
E:	info@texim-europe.com
Homepage:	www.texim-europe.com

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany Bahnhofstrasse 92

D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 E: austria@texim-europe.com

Nordic Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com

2025

www.texim-europe.com