WAA0154A2AAA4NXXX000

1.54 inch E-paper Display Series

www.texim-europe.com

Distributed by www.texim-europe.com

Product Specifications

Customer	Standard
Description	1.54" E-PAPER DISPLAY
Model Name	WAA0154A2AAA4NXXX000
Date	2024/09/03
Revision	1.0

Design Engineering					
Approval	Check	Design			

CONTENTS

1. Over View	4
2. Features	4
3. Mechanical Specifications	· -4
4. Mechanical Drawing of EPD module	5
5. Input /Output Pin Assignment	6
6. Command Table	8
7. Electrical Characteristics	20
8. Optical Specifications	26
9. Typical Application Circuit	27
10. Matched Development Kit	28
11. Reliability test	29
12. Typical Operating Sequence	30
13. Inspection method and condition	31
14. Handling, Safety and Environment Requirements	35
15. Packaging	36
16. Precautions	37

1. Over View

WAA0154A2AAA4NXXX000 is a TFT active matrix electrophoretic display with front light. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I2C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3.Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	27.0(H)×27.0(V)	mm	
Pixel Pitch	0.14×0.14	mm	
Pixel Configuration	Square		
Outline Dimension	31.80(H)×37.32(V) ×1.85(D)	mm	
Weight	3.15±0.5	g	

module EPD of **Mechanical Drawing** 4

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	Ι	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	VSS	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin

is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin

Low when the driver IC is working such as:

Outputting display waveform; or

Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Command Table

0	0	01													
0	U				0	0	0	0	0	4	Driver Output control	Gate actt	na		
0		01	0	0	0	0	0	0	0	1				200 MU	(
	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	-	MUX Gate	e lines set	ting as (A	(8.01 + 1)
0	1		0	0	0	0	0	0	0	A ₈		mon out	0 11100 001	ung do (/	[0.0] • 1)
0	1		0	0	0	0	0	B ₂	B ₁	Bo		B[2:0] = 0	00 [POR]	(II	
												Gate scar	nning sequ	uence and	direction
												B[2]: GD Selects th GD=0 [PC G0 is the output see GD=1, G1 is the output see B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G B[0]: TB	te 1st outp DR], 1st gate c quence is 1st gate c quence is canning o DR], 62, G31) 64G19	out Gate G0,G1, G output cha G1, G0, G order of ga 99 (left ar 8, G1, G3	nnel, gate 2, G3, nnel, gate 53, G2, te driver. nd right ga
												TB = 0 [P] TB = 1, so	can from (G199 to G	0.
0	0	02	0	0	0	0	0	0	1	1	Coto Driving voltago	Set Cate	driving vo	Itago	
0	1	03	0	0	0	0	0 A.	0	۱ ۸.	Λ.	Control	A[4:0] = 0	0h [POR]	llaye	
0	1		0	0	0	A4	A ₃	A ₂	A1	A ₀		VGH setti	ng from 1	0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		

om	man	d Tal	ble											
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Source	e Driving	oltage	Set Source driving voltage
0	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	A	Contro	bl		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	Be	Bs	B	Ba	Ba	Bı	Bo	1			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		C	C	0.	C.	0.	C-	C	C	-			C[7:0] = 32h [POR], VSL at -15V
0		- 1	07	06	05	04	03	02			ļ			
A[/]	H1/VS	= 1, SH2 \	voltag	ge se	tting	from	2.4V	VS		SH2	, voltag	e setting f	rom 9V	C[7] = 0, VSL setting from -5V to -17V
to 8	.8V	-		-				to	17V					
A/I	B[7:0]	VSH	1/VSH2	A/E	B[7:0]	VSH1	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	C[7:0] VSL
1	8Fh	1 1	2.5	B	BOh	5	.8		24h		9.2	3Dh	14.2	0An -5
5	90h		2.6	B	8 <mark>1h</mark>	5	.9		25h		9.4	3Eh	14.4	0Eh -6
9	91h		2.7	B	82h		6		26h	_	9.6	3Fh	14.6	10h -6.5
	92h 93h	3	2.8	B	33n 34h	6	.1		27h 28h	-	9.8	40n 41h	14.8	12h -7
	94h		3	6	5h	6	.3		29h	-	10.2	42h	15.2	14h -7.5
9	95h		3.1	B	86h	6	.4		2Ah		10.4	43h	15.4	16h -8
(96h		3.2	B	87h	6	.5		2Bh	-	10.6	44h	15.6	18h -8.5
9	97n 98h		3.3 3.4	B	son 39h	6	.0		2Ch 2Dh	-	10.8	45h 46h	15.8	1Ah -9
	99h		3.5	В	Ah	6	.8		2Eh		11.2	47h	16.2	1Cn -9.5
ę	9Ah	1	3.6	В	Bh	6	.9		2Fh		11.4	48h	16.4	20b -10.5
ç	9Bh		3.7	B	Ch		7		30h	_	11.6	49h	16.6	2011 -10.5 22h -11
	9Ch 9Dh		3.8	B	Eh	7	.1		31h	+	11.8	4An 4Bh	16.8	24h -11.5
6	9Eh	1	4	B	BFh	7	.3		33h		12.2	Other	NA	26h -12
5	9Fh		4.1	C	0 <mark>h</mark>	7	.4		34h		12.4			28h -12.5
1	AOh		4.2	C	1h	7	.5		35h	_	12.6			2Ah -13
	A1h A2h		4.3		3h	7	.6		36h 37h	-	12.8			2Ch -13.5
1	A3h		4.5	0	24h	7	.8		38h	+	13.2			2Eh -14
1	A4h		4.6	C	55h	7	.9		39h		13. <mark>4</mark>			30h -14.5
1	A5h		4.7	0	C6h	1	В		3Ah	_	13.6			3211 -15
	A6h A7h		4.8		27h 28h	8	.1		3Bh		13.8			36h -16
1	A8h	1	5	0	C9h	8	.3							38h -16.5
1	A9h	1	5.1	C	Ah	8	.4							3Ah -17
F	AAh		5.2	C	Bh	8	.5							Other NA
	ABh	8	5.3	0	Ch	8	.6							
F	ADh		5.5	C	Eh	8	.8							
P	AEh		5.6	0	ther	N	IA							
														<u> </u>
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Sett	ing	Program Initial Code Setting
~	9	00		0	0					0	OTP F	Program	9	
														The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
0	0	09	0	0	0	0	1	0	0	1	Write	Register f	o <mark>r Initia</mark> l	Write Register for Initial Code Setting
0	1		A7	As	A ₅	A	A3	A2	A	A	Code	Setting		Selection
0	1	-	R-	R	R.	R.	R.	R	B.	R				A[7:0] ~ D[7:0]: Reserved
0			07	D6	05	04	03	02	01	00				Details refer to Application Notes of Initial
U	1		C7	C ₆	C5	C ₄	C ₃	C2	C1	Co	-			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do				
0	0	0A	0	0	0	0	1	0	1	0	Read Code	Register f Setting	or Initial	Read Register for Initial Code Setting

WAA0154A2AAA4NXXX000

Cor	mm	and	d Tak	ole	De	DE	DA	D2	D 2	D4	0	Command	Decerinți	
R/VV	# 0	0#	пех		00	Do	04	03	UZ			Command	Description	OII
0		0 1	0C	0	0		0	1	1	0	0	Booster Soft start	for soft start	current and duration setting.
0		1		4	D	D	D D	P P	D D		D		A[7:0] -> So	ft start setting for Phase1
0		1		1		D5	D4						=	8Bh [POR]
0		1		L	6	65	64	U 3	02	01	Co		B[7:0] -> So	9Ch [POR]
0		1		0	0	D ₅	D ₄	D ₃	D ₂	D	Do		C[7:0] -> So = D[7:0] -> Du = Bit De A[6:0]	ft start setting for Phase3 96h [POR] ration setting 0Fh [POR] scription of each byte: / B[6:0] / C[6:0]:
													Bit[6:4] Driving Strength Selection
													000	1(Weakest)
													001	2
													010	3
													011	4
													100	5
													100	
													101	0
													110	1
													111	8(Strongest)
													Bit[3:0] Min Off Time Setting of GDR [Time unit]
													0000	NA
													0011	
													0100	2.6
													0101	3.2
													0110	3.9
													0111	4.6
													1000	5.4
													1001	6.3
1													1010	73
													1010	84
													1100	0.4
													1100	9.0
													1101	11.5
													1110	13.8
													1111	16.5
													D[5:0]: D[5:4 D[3:2 D[1:0 Bit[1:0	duration setting of phase]: duration setting of phase 3]: duration setting of phase 2]: duration setting of phase 1 Duration of Phase [Approximation]
													00	TUMS
													01	20ms
													10	30ms
											_		11	40ms
0	(0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Slee	p mode Control:
0	3	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]:	Description
										1	8		00	Normal Mode [POR]
													01	Enter Deep Sleep Mode 1
													11 .	Enter Deep Sleep Mode 2
													After this of enter Deep keep outport Remark: To Exit De	command initiated, the chip will p Sleep Mode, BUSY pad will ut high. eep Sleep mode, User required
													to send H	WRESET to the driver

WINSTAR Display

Con	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A5	A ₄	0	A ₂	A1	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	Aı	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V
												111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
											F	After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register
0	1		A11	A10	A ₉	As	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	40	0	0	0	4	4	0	4	4	Tomporature Occasion	Dood from tomp proting to picker
1	1	IR	0 Arr	Are		A ₂	Δ-	Δ_	1 Δ-	Δ.	Control (Read from	Read from temperature register.
1	1		A	A10	A ₁	A	0	0	0	0	temperature register)	
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	
0	1		B ₇	B ₆	Bo	B ₄	B ₃	B ₂	B ₁	Bo	sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR]
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		C[7:0] = 00h [POR],
								02				A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] Address + pointer + 1st parameter 0 Address + pointer + 1st parameter 1 Address + pointer + 1st parameter + 2nd pointer 1 Address A[5:0] – Pointer Setting B[7:0] – 1 st parameter C[7:0] – 2 nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sense starts. BUSY pad will output high during
0	0	20	0	0	1	0	0	0	0	0	Master Activation	operation. Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0 1	21	0 A7	0 A ₆	1 A5	0 A4	0 A3	0 A2	0 A1	1 A ₀	Display Update Control	RAM content option for Display Update A[7:0] = 00h [POR]
												B[7:0] = 00n [POR]
												A[7:4] Red RAM option
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
												0100 Normal
												1000 Inverse RAM content
			5 26									
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A1	Ao		A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter ca be made independently in each upper a lower bit of the address. 00 – Y decrement, X decrement, 01 – Y decrement, X increment, 10 – Y increment, X increment, 11 – Y increment, X increment [POR]
												A[2] = AM Set the direction in which the address counter is updated automatically after d are written to the RAM. AM= 0, the address counter is updated the X direction. [POR]

Com	man	dia	DIE					22					
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0 A7	0 A ₆	1 A5	0 A4	0 A3	0 A2	1 A1	0 A ₀	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Act AI7:01= FFb (POR)	ion: tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal ➔ Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
											E	Enable Clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie	es will be
											/ RAM 0x24	written into the BW RAM until a command is written. Address p advance accordingly	another ointers wil
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	1

RVW IDCH Hex. D7 D6 D5 D4 D3 D2 D1 D0 Command Description 0 0 26 0 0 1 0 0 1 1 0 Write RAM (RED) After this command, data entries will advance accordingly. 0 0 27 0 0 1 1 0 Write RAM (RED) For Red pixel: Content of Write RAM(RED) = 1 0 0 27 0 0 1 1 1 Read RAM After this command, data read on the MCU bus will feat from RAM. According to parameter of Register 41h to select reading RAM0x24 RAM0x26. 0 0 28 0 0 1 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. 0 0 28 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С	om	man	d Ta	ble									
0 0 26 0 0 1 0 1 1 0 Write RAM (RED) (RAM 0x26 After this command, data entries will advance accordingly. 0 0 27 0 0 1 0 1 1 1 0 Write RAM (RED) After this command, data entries will advance accordingly. 0 0 27 0 0 1 0 1 1 1 Read RAM After this command, data entries will advance accordingly. 0 0 27 0 0 1 1 1 Read RAM After this command, data form RAM. According to parameter of Register 41 ho select reading RAM0x24/. RAM0x26, until another command is writen. Address pointers will advance accordingly. 0 0 28 0 0 1 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. 0 0 29 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	R	/W #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 0 27 0 0 1 0 0 1 1 1 Read RAM After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading PAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data. 0 0 28 0 0 1 0 0 0 VCOM Sense Enter VCOM sensing conditions and hold solution defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 0 0 29 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 VCOM Sense Enter VCOM sensing conditions and hold ANALOGEN=1 Refer to Register 0X22 for detail. BUSY pad will output high during operation. 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0 0 27 0 0 1 0 1 1 1 Read RAM After this command, data read on the MAM. According to parameter of Register 41 h to select reading RAMOx241 rAMOx261, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data. 0 0 28 0 0 1 0 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 28h before reading VCOM value. The sensed VCOM voltage is stored in register 0 0 28 0 0 1 0 1 0 1 0 1 0 0 VCOM Sense 0 0 28 0 0 1 0 0 VCOM Sense Enter VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 0 0 29 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1							7 .							
0 0 28 0 0 1 0 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register 0 0 28 0 0 1 0 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register 0 0 29 0 1 0 1 0 1 Refer to Register 0x22 for detail. 0 0 29 0 1 0 1 0 1 Refer to Register 0x22 for detail. BUSY pad will output high during operation. Stabling time between entering VCOM sense Duration Stabling time between entering VCOM sense duration = 10s. VCOM sense duration = (A[3:0]+1) sec 0 0 2A 0 0 1 0 1 0 Program VCOM OTP Program VCOM register into OTP 0 0 2A 0 0 1 0 1 0 1 0 1 0 1 <td></td> <td>0</td> <td>0</td> <td>27</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>Read RAM</td> <td>After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.</td>		0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
0 0 28 0 0 1 0 1 0 0 0 VCOM Sense Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 0 0 29 0 1	\vdash													The 1st byte of data read is duffilly data.
0 0 29 0 0 1 0 Program VCOM Sense Duration Stabling time between entering VCOM sensing mode and reading acquired. 4[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec VCOM sense duration = (A[3:0]+1) sec 0 0 2A 0 0 1 0 1 0 Program VCOM OTP Program VCOM register into OTP The command required CLKEN=1. 0 0 0 1		0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														operation.
002900101001010100A3A2A1A0010100A3A2A1A0010100A3A2A1A0002A001010Program VCOM OTPProgram VCOM register into OTP002A00101010Program VCOM OTPProgram VCOM register into OTP101010101010Program VCOM OTPProgram VCOM register into OTP10010101010Program VCOM OTPProgram VCOM register into OTP100101010Program VCOM OTPProgram VCOM register into OTP100101010Program VCOM OTPProgram VCOM register into OTP1001011010Program VCOM OTP01001101100100110001100110110011011					1923	1027								
0 0 2A 0 0 1 0 1 0 1 0 Program VCOM OTP Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. 0 0 2B 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 <td></td> <td>0</td> <td>0</td> <td>29</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1 A₃</td> <td>0 A2</td> <td>0 A1</td> <td>1 A₀</td> <td>VCOM Sense Duration</td> <td>Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec</td>		0	0	29	0	0	1	0	1 A ₃	0 A2	0 A1	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0 0 2A 0 0 1 0 1 0 1 0 Program VCOM OTP Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. 0 0 2B 0 0 1 0 1 1 1 BUSY pad will output high during operation. 0 0 2B 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0			121											
0 0 2B 0 0 1 0 1 1 Write Register for VCOM Control This command is used to reduce glitch when ACVCOM toggle. Two data bytes D04h and D63h should be set for this command.		0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 				-							
0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0		0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
		0	1	8 8	0	0 1	0	0	0	1 0	0 1	0		D04h and D63h should be set for this command.

WINSTAR Display

Com	man	d Ta	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM regist	er from N	ICU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70n	-2.8
												30N	-1.4	74N	-2.9
												10h	-1.0	Othor	-5
												4011	-1.0	Other	
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	edister for	Display (Ontion:
1	1	20	Δ_	Δ.	Δ.	Δ.	1	Δ	Δ.	Λ.	Display Option	Reading	logister for	Display	option.
1	1		P_	R.	P.	P.	R.	R ₂	B.	R.		A[7:0]:	VCOM OT	P Selecti	on
1	1	-	07	D ₆	05	D4	D3				-	(Comm	and 0x37,	Byte A)	
1	1		07	06	05	C4	C3	02			-	P[7:0].		nictor	
1	1		D7	D ₆	D5	D ₄	D_3	D ₂			-	(Comm	and 0x2C)	gister	
1	1		E7	E ₆	E5	E4	E3	E ₂	E1	E ₀	-	(
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	-	C[7:0]~	G[7:0]: Dis	play Moo	le
1	1		G7	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		(Comm	and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		[5 byte:	sj		
1	1		17	6	5	4	1 3	12	1	lo		H[7:0]~	K[7:0]: Wa	veform V	ersion
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J_2	J ₁	Jo		(Comm	and 0x37,	Byte G to	o Byte J)
1	1		K7	K ₆	K ₅	K4	Kз	K ₂	K1	Ko		[4 bytes	s]		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10) Byte User	ID store	ed in OTP:
1	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~	J[7:0]: Use	rID (R38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	1				
1	1		E7	E ₆	E ₅	E ₄	E3	E ₂	E1	E ₀					
1	1		F ₇	Fe	E ₅	F4	F ₃	F ₂	F1	Fo	1				
1	1		G ₇	Ge	G ₅	G	Ga	G	G	Go	-				
1	1		H-	He	H	H.	H ₂	Ha	H	H	-				
1	1	5	1-	10	1.5	1 14	113	112	L		-				
1	4		17	16	15	14	13	12	11	10	-				
- T	1		J ₇	J 6	J5	J4	J ₃	J ₂	J1	Jo					

Com	man	d Ta	ble									Description			
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description			
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]			
1	1		0	0	A ₅	A4	0	0	A ₁	Ao		A[5]: HV Ready Detection flag [POR=0]			
												0: Ready			
												1: Not Ready			
												A[4]. VCI Detection hag [POR-0]			
												1: VCI lower than the Detect level			
												A[3]: [POR=0]			
												A[2]: Busy flag [POR=0]			
												0: Normal			
												1: BUSY			
												A[1:0]: Chip ID [POR=01]			
												Remark:			
												A[5] and A[4] status are not valid after			
												RESET, they need to be initiated by			
												command 0x14 and command 0x15			
			2 - 7									respectively.			
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting			
1.5%			1.20		8.5	1	8		100			The contents should be written into RAM			
												before sending this command.			
												The command required CLKEN=1.			
												Refer to Register 0x22 for detail.			
												BUSY pad will output high during			
												operation.			
						es									
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting			
												The command required CLKEN=1.			
												There is register on 22 for detail.			
												BUSY pad will output high during			
												operation.			
10															
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		[153 bytes], which contains the content of			
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		and ER[n]			
0	1		:	•		:	:	:	:	:		Refer to Session 6.7 WAVEFORM			
0	1					100		•	•	8		SETTING			
												1			
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command			
												For details, please refer to SSD1681			
												application note.			
												BUSY pad will output high during			
												operation.			
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read			
1	1		A15	A14	A13	A12	A11	A10	Ag	As	n an	A[15:0] is the CRC read out value			
1	1		A7	A	As	A ₄	Аз	A ₂	A ₁	Ao					
· .	82		100.00			10000					1	1			

0011	nmand Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]		
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.		
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option		
0	1		A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection		
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	1: Spare		
0	1		C ₇	C ₆	C ₅	C4	C ₃	C ₂	C ₁	C ₀	-			
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	-	B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]		
0	1		E7	E ₆	E ₅	E ₄	E ₃	E ₂	E1	E ₀	-	D[7:0] Display Mode for WS[23:16]		
0	1		0		0	0		F ₂	F ₁	Fo	-	E[7:0] Display Mode for WS[31:24]		
0	1		G7	G ₆	G5	G4	G ₃	G2	G1	G ₀	-	0: Display Mode 1		
0	1	-			П5 І-		□ 3				-	1: Display Mode 2		
0	1		17	16	10	14	13	12	n Ja	10	-	FIGI: PingPong for Display Mode 2		
U	6		07	00	05	04	03	02	U	00		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable		
												G[7:0]~J[7:0] module ID /waveform version.		
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support		
						;						for Display Mode 1		
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID		
0	1	00	A7	A	A ₅	A ₄	A3	A ₂	A ₁	A	White Register for Oser ID	A[7:0]]~J[7:0]: UserID [10 bytes]		
0	1	7	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B1	Bo		Demotive: AI7:01- II7:01 can be stored in		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do				
0	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀				
0	1	V	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo				
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	-			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho	-			
0	1		7	6	5	4	13	2	1	lo	-			
0	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J ₁	Jo				
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode		
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage		
												Remark: User is required to EXACTLY follow the reference code sequences		

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	30	0	0	1	1	1	1	0	0	Border Waveform Control	Select border	waveform for VBD
0	1	00	Δ_	Δ.	Δ.	Λ.	0	Δ.	Δ.	Δ.		A[7:0] = C0h	PORI, set VBD as HIZ.
U			~ (~ 6	~	~4	U	~ 2		~0		A [7:6] :Selec	t VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and
													A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A [5:4] FIX Le	vel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
													VSHZ
												AI2LOS Tran	sition control
													S Transition control
													utput VCOM @ RED)
												1 Fo	llow LUT
												A [1:0] GS Tra	ansition setting for VBD
												A[1:0]	VBD Transition
												00	LUTO
												01	LUT1
												10	LUT2
												11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU	Tend
0	1		A ₇	A	A ₅	A4	A ₃	A ₂	A ₁	A		A[7:0]= 02h [F	POR]
										1010/00/00		22h Norm	al.
												07h Source	e output level keep
												previo	ous output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM O	ption
0	1		0	0	0	0	0	0	0	A		A[0]= 0 [POR	
												0 : Read RAN	corresponding to RAM0x24
												T. Read RAIN	Corresponding to RAMUX26
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the st	art/end positions of the
0	1		0	0	Ar	Δ.	Δ.	1	Λ.	Δ.	Start / End position	window addre	ess in the X direction by an
0	1		0	0	P.	P.	A3	R ₂	P.	R.		address unit	for RAM
0			U	0	D5	D4	D 3	D 2	D1	D0			
												A[5:0]: XSA[5	:0], XStart, POR = 00h
		Ļ									р.	B[5:0]: XEA[5	:UJ, XEnd, POR = 15h
	0	45	0	4	0	0	0	4	0		Out Daw V address	0	
0	0	40	0	1	0	0	0	1	0	1	Start / End position	window addre	arvenu positions of the
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		address unit f	or RAM
0	1		0	0	0	0	0	0	0	A ₈		addrood unit i	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[8:0]: YSA[8	:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	Ba		B[8:0]: YEA[8	:0], YEnd, POR = 127h
-									1		1		

Com	man	d Ta	ble D7	DC	DC	Dt	D2	D2	D4	D 2	Command	Descripti			
		Hex	0/	106	05	04	03	02	1	00		Descripti		M for De-	ulor Dottor
0	1	46	0 A7	1 A ₆	0 As	0 A₄	0	1 A2	1 A1	0 Ao	Regular Pattern	Auto Write A[7:0] = 0	e RED RA 0h [POR]	ivi tor Reg	jular Pattern
												A[7]: The A[6:4]: Step	1st step v ep Height, ter RAM ir	alue, POF POR= 00 Y-directi	R = 0 0 on according
												to Gate		i i anooti	on according
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste Step of al	ep Width, ter RAM ir	POR= 000 n X-directi) on according
												to Source	AA/: JAL	410-01	14/2 - 141-
												A[Z:U]	vviath	A[2:0]	
												000	0	100	128
i I												001	16	101	200
												010	32	110	200
												011	64	111	200
												BUSY pactors	d will outpu	ut high du	ring
	0	47	0									A			dee Dotte
0	1	41	0 A7	A ₆	0 As	A ₄	0	1 A2	A ₁	Ao	Regular Pattern	Auto WriteA[7:0] = 0	e b/w RAI 0h [POR]	vi ior Regi	ular Pattern
												A[7]: The	1st step v	alue, POR	R = 0
												Step of al	ter RAM ir	Y-direction	on according
													Height	A(6·41	Height
												A[0.4]	o	100	128
												000	0	100	120
												001	10	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Step of al	ep Width, ter RAM ir	POR= 000 n X-directi) on according
												to Source	1 14/ 111	A.(C. 0.)	1.46.10
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												During op high.	eration, B	USY pad	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	ial settings	for the R	AM X
0	1		0	0	A ₅	A4	Аз	A2	Aı	A ₀	counter	address i	n the addr	ess count	er (AC)
							с н					A[5:0]: 00	in [PURJ.		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make init	ial settings	o for the R	AMY
0	1		A7	A6	As	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address i	n the addr	ess count	er (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	iuh [POR].		
0	0	7F	0	1	1	1	1	1	1	1	NOP	This com	mand is a	n empty c	ommand: it
	,		,									does not module. However Frame Ma Comman	it can be u emory Wri ds.	effect on t used to ter ite or Read	rminate d

7.Electrical Characteristics

7-1. Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

7-2. Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	Vss	-		-	0		v
Logic supply voltage	Vci	4	VCI	2.2	3.0	3.7	v
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	v
High level input voltage	VIII	-		0.8 Vc1		-	v
Low level input voltage	VIL	4			121	0.2 Va	v
High level output voltage	VOH	IOH = - 100uA	1.7	0.9 VCI	-	- 11 - M	V
Low level output voltage	Vol	IOL = 100uA			-	0.1 Va	v
Typical power	Ртур	Vg=3.0V	1441		4.5	222	mW
Deep sleep mode	P _{STPY}	Vc1=3.0 V		-	0.003		mW
Typical operating current	Iopr_V _{CI}	Va=3.0V		-	1.5	0708	mA
Full update time		25 °C	-		2	121	sec
Fast update time	-	25 °C		<u></u>	1.5	-	sec
Partial update time	-	25 °C	-	-	0.26	17 7 28	sec
Sleep mode current	Islp_Va	DC/DC off No clock No input load Ram data retain			20		uA
Deep sleep mode current	Idslp_Va	DC/DC off No clock No input load Ram data not retain	140	•	1	5	uA

Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process; Partial refresh: The screen does not flicker during the refresh process.

Note: During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern.(Note 7-1)The standby power is the consumed power when the panel controller is in standby mode. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR DISPLAY Vcom is recommended to be set in the range of assigned value \pm 0.1V.

Note 7-1 The Typical power consumption

WINSTAR

7-3-1. MCU Interface

7-3-1-1. MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

	Pin Name									
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA				
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA				
3-wire serial peripheral interface (SPI) – 9 bits SPI	н	RES#	CS#	L	SCL	SDA				

Table 7-1 : Interface pins assignment under different MCU interface

Note:(1) L is connected to VSS and H is connected to VDDIO

7-3-1-2. MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	ſ	Command bit	L	L
Write data	Ť	Data bit	Н	L

Table 7-2 : Control pins status of 4-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) † stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/ C# pin.

Figure 7-1 : Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 7-2 : Read procedure in 4-wire SPI mode

7-3-1-3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	Ŷ	Data bit	Tie LOW	L

Table 7-3 : Control pins status of 3-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) \uparrow stands for rising edge of signal

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

Figure 7-4 : Read procedure in 3-wire SPI mode

7-3-2.Serial Peripheral Interface

ode				
Parameter	Min	Тур	Max	Unit
SCL frequency (Write Mode)	1.5	-	20	MHz
Time CS# has to be low before the first rising edge of SCLK	60	0-	-	ns
Time CS# has to remain low after the last falling edge of SCLK	65		1.76	ns
Time CS# has to remain high between two transfers	100			ns
Part of the clock period where SCL has to remain high	25	-	-	ns
Part of the clock period where SCL has to remain low	25			ns
Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	2	ns
ode		2	0	
Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)		-	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100	-	÷.	ns
Time CS# has to remain low after the last falling edge of SCLK	50	-		ns
Time CS# has to remain high between two transfers	250	-		ns
Part of the clock period where SCL has to remain high	180	2	2	ns
Part of the clock period where SCL has to remain low	180	-	-	ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	-	ns
Time SO (SDA Dead Meda) will remain stable after the falling adapt of SO	1.1	0		
	Parameter SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL Tome SI (SDA Write Mode) has to remain stable after the rising edge of SCL Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL Time SI (SDA Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain low Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL </td <td>Parameter Min SCL frequency (Write Mode) - Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10 Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL 40 ode Parameter Min SCL frequency (Read Mode) - - Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high 180 Part of the clock period where SCL has to remain low 180 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain low 180 Time CS# has to remain high bet</td> <td>Parameter Min Typ SCL frequency (Write Mode) - - Time CS# has to be low before the first rising edge of SCLK 60 - Time CS# has to remain low after the last falling edge of SCLK 65 - Time CS# has to remain low after the last falling edge of SCLK 65 - Time CS# has to remain high between two transfers 100 - Part of the clock period where SCL has to remain high 25 - Part of the clock period where SCL has to remain low 25 - Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 40 - ode - - - - Parameter Min Typ SCL frequency (Read Mode) - - Time CS# has to be low before the first rising edge of SCLK 100 - - Time CS# has to remain low after the last falling edge of SCLK 100 - Time CS# has to remain low after the last falling edge of SCLK 50 - Time CS# has to remain low after the last falling edge of SCLK 50 - Time CS# has to remain high between two transfers 250 - Part of</td> <td>Parameter Min Typ Max SCL frequency (Write Mode) - - 20 Time CS# has to be low before the first rising edge of SCLK 60 - - Time CS# has to remain low after the last falling edge of SCLK 65 - - Time CS# has to remain low after the last falling edge of SCLK 65 - - Part of the clock period where SCL has to remain high 25 - - Part of the clock period where SCL has to remain low 25 - - Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10 - - Time CS# has to remain low after the last falling edge of SCL 40 - - Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL 40 - - Ode - - 2.5 - - 2.5 Time CS# has to be low before the first rising edge of SCLK 100 - - - Time CS# has to remain low after the last falling edge of SCLK 100 - - - Time CS# has to remain low after the last falling edge of SCLK 50 - - -</td>	Parameter Min SCL frequency (Write Mode) - Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10 Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL 40 ode Parameter Min SCL frequency (Read Mode) - - Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high 180 Part of the clock period where SCL has to remain low 180 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain low 180 Time CS# has to remain high bet	Parameter Min Typ SCL frequency (Write Mode) - - Time CS# has to be low before the first rising edge of SCLK 60 - Time CS# has to remain low after the last falling edge of SCLK 65 - Time CS# has to remain low after the last falling edge of SCLK 65 - Time CS# has to remain high between two transfers 100 - Part of the clock period where SCL has to remain high 25 - Part of the clock period where SCL has to remain low 25 - Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 40 - ode - - - - Parameter Min Typ SCL frequency (Read Mode) - - Time CS# has to be low before the first rising edge of SCLK 100 - - Time CS# has to remain low after the last falling edge of SCLK 100 - Time CS# has to remain low after the last falling edge of SCLK 50 - Time CS# has to remain low after the last falling edge of SCLK 50 - Time CS# has to remain high between two transfers 250 - Part of	Parameter Min Typ Max SCL frequency (Write Mode) - - 20 Time CS# has to be low before the first rising edge of SCLK 60 - - Time CS# has to remain low after the last falling edge of SCLK 65 - - Time CS# has to remain low after the last falling edge of SCLK 65 - - Part of the clock period where SCL has to remain high 25 - - Part of the clock period where SCL has to remain low 25 - - Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10 - - Time CS# has to remain low after the last falling edge of SCL 40 - - Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL 40 - - Ode - - 2.5 - - 2.5 Time CS# has to be low before the first rising edge of SCLK 100 - - - Time CS# has to remain low after the last falling edge of SCLK 100 - - - Time CS# has to remain low after the last falling edge of SCLK 50 - - -

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

Figure 7-5: SPI timing diagram

8.Operation Flow and Code Sequence

8-1. General operation flow to drive display panel

9. Reference Circuit

Part Name	Requirements for spare part
C1-C12	0603/0805; X5R/X7R;Voltage Rating:≥25V
R1、R2	0603/0805;1% variation,≥0.05W
D1—D3	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA
	3)Forward voltage ≤430mV
01	Si1308EDL:1)Drain-Source breakdown voltage≥30V
QI	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ
L1	refer to NR3015: Io=500mA(max)
P1	24pins,0.5mm pitch

10. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh blackwhite E-paper Display, three-color (black, white and red/Yellow) E-paper Display and four-color(black, white, red and yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, FLASH c hip, font chip, current detection ect.

Development Kit consists of the development board and the pinboard.

Supported development platforms include STM32, ESP32, ESP8266, Arduino UNO, etc.

11. Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50° C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle: $[-25^{\circ} \text{ C } 30 \text{min}] \rightarrow [+70^{\circ} \text{ C } 30 \text{ min}] : 50 \text{ cycles}$ Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

12. Typical Operating Sequence

12.1 Normal Operation Flow

13.Inspection method and condition

13.1 Inspection condition

Item	Condition
Illuminance	≥1000 lux
Temperature	22°C±3°C
Humidity	45-65 % RoHS
Distance	≥30cm
Angle	±45°
Inspection method	By eyes

基板边缘 C 区域

> B 区域 A 区域

13.2 Display area 13.2.1 Zone definition:

A Zon <mark>e</mark> :	Active area
B Zone:	Border zone
C Zone:	From B zone edge to panel edge

13.3 General inspection standards for products 13.3.1 Appearance inspection standard

WAA0154A2AAA4NXXX000

Inspection item		Figure	Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	$ \begin{array}{l} \mbox{Chipping at the edge:} \\ \mbox{Module over 7.5" (Include 7.5") :} \\ \mbox{X \leq 6mm, Y \leq 1mm Z \leq T N=3} & \mbox{Allowed} \\ \mbox{Module below 7.5" (Not include 7.5") :} \\ \mbox{X \leq 3mm, Y \leq 1mm Z \leq T N=3} & \mbox{Allowed} \\ \mbox{Chipping on the corner:} \\ \mbox{IC sideX \leq 2mm Y \leq 2mm, Non-IC sideX \leq 1mm Y \leq 1mm .} & \mbox{Allowed} \\ \mbox{Note:} \\ \mbox{1. Chipping should not damage the edge wiring. If it does not affect the display, allowed} \\ \mbox{2. The size of the chipping is larger than the above conditions but the display is normal, it can be taken as the B spec.} \\ \end{array} $	Check by eyes Film gauge	MIN
	Crack	玻璃裂紋	Crack at any zone of glass, Not allowed	Check by eyes、 Film gauge	MIN
	Burr edge	+	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Remarks: The total number of defects in a single piece of A-spec glass is not allowed to exceed 4.

					Inspecti	MAJ	
	Inspection item		Figure	Inspection standard	on	1	
-	PS defect	Water proof film		 Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed 	method Check by eyes	MIN	E
	RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by eyes	MIN	
		Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN	
	EC defect	Adhesive bubble	TPT边缘 防水胶涂布区 封边股边接象 防水胶涂布区 。 PS边缘 防水胶涂布区 。 Border外缘(PPL边接象)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b/2≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN	

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		 Overflow, exceeds the panel side edge, affecting the size, not allowed No adhesive at panel edge≤1mm, mo exposure of wiring, allowed No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed Adhesive height exceeds the display surface, not allowed 	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		 Single silver dot dispensing amount ≥1mm, allowed One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed 	Visual	MIN
			Silver dot dispensing residue on the panel ≤ 0.2 mm, allowed	Film gauge	MIN
FPC defect	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
	FPC golden finger	C	The height of burr edge of TCP punching surface \geq 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective Protective		Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
film defect	film	Adhesive at edge L≤5mm, W≤0.5mm, N=	2, no entering into viewing area	Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99	% alcohol, allowed	Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective Che film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

Remarks: The definition of other appearance B spec products, no affect to the display, and no entering into the viewing area.

14. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

RoHS

15. Packaging

TBD

16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T:	+31 (0)53 573 33 33
E:	info@texim-europe.com
Homepage:	www.texim-europe.com

The Netherlands

Elektrostraat 17 NL-74<mark>8</mark>3 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany - North

Bahnhofstrasse 92 D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany - South

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria Warwitzstrasse 9

A-5020 Salzburg T: +43 (0)662 216 026

E: austria@texim-europe.com

Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com

2024

www.texim-europe.com