

Shenzhen Leadtek Electronics Co.,Ltd

PRODUCT SPECIFICATION

TFT-LCD MODULE

Module No: LTK173FTBBM11-V0

☑ Preliminary Specification

□ Approval Specification

Designed by	Checked by	Approved by		
jona	Terry	lan		

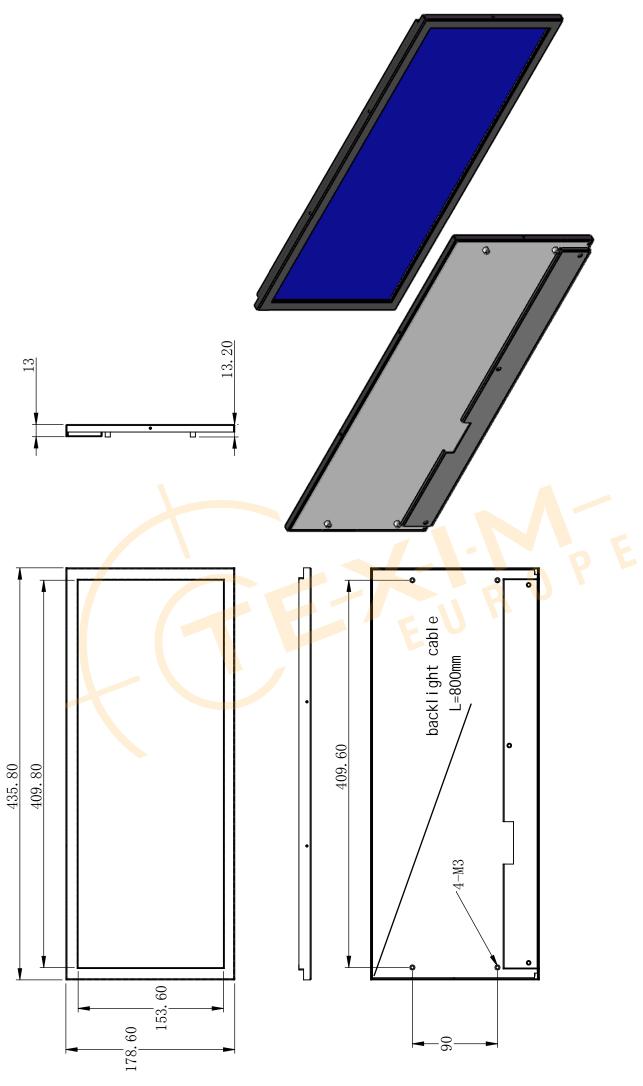
Final Approval by Customer

Approved by	Comment				
	Distributed by:				

The specification of "TBD" should refer to the measured value of sample . If there is difference between the design specification and measured value, we naturally shall negotiate and agree to solution with customer.

1.Document Revision History

Version	Contents	Date	Note
V0	Initial version	2023.10.06	
			PE
			U '
		FU	-



2. General Description

NO	ltem	Specification	Unit
1	LCD Size	TFT"17.3	inch
2	Panel Type	IPS	mm
3	Display Resolution	1366 x RGB x 512	pixel
4	Display Mode	Normally Black	-
5	Number of Colors	16.7	-
6	Viewing Direction	ALL	-
7	LCM Module size	435.80(W)×178.60(H)×13.20(T)	mm
8	Panel Active Area	409.80(W)×153.60(H)	mm
9	Pixel Pitch	0.3 (H) x 0.3(V)	mm
10		-	
11	Light Source	White LED	
12	LCM Interface	LVDS	bit

Note : Please refer to the mechanical drawing

3. Mechanical Drawing

Distributed by www.texim-europe.com

4.0 Interface Connection

4.4.1 Connector Type

4.4.2 Connector Pin Assignment

Pin No	Symbol	Function	Remark
1	NC	No connection	
2	CE	No connection	internal use
3	CTL	No connection	internal use
4	GND	GND Ground	
5	RX0-	Negative LVDS differential data input. Channel 0	
6	RX0+	Positive LVDS differential data input. Channel 0	
7	GND	Ground	
8	RX1-	Negative LVDS differential data input. Channel 1	
9	RX1+	Positive LVDS differential data input. Channel 1	
10	GND	Ground	
11	RX2-	Negative LVDS differential data input. Channel 2	
12	RX2+	Positive LVDS differential data input. Channel 2	
13	GND	Ground	
14	RXCLK-	Negative LVDS differential clock input.	
15	RXCLK+	Positive LVDS differential clock input.	
16	GND	Ground	
17	RX3-	Negative LVDS differential data input. Channel 3	
18	RX3+	Positive LVDS differential data input. Channel 3	
19	GND	Ground	
20	NC	Not connection, this pin should be open.	
21	NC	Not connection, this pin should be open.	
22	NC	Not connection, this pin should be open.	
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	VCC	5V Power supply	
27	VCC		
28	VCC]	
29	VCC]	
30	VCC		

5.0 Electrical Characteristics

5.1.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	5.0	[Volt]	Ta=25

5.1.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Мах	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.0	[Volt]	
IDD	Power supply	I	0.6	0.72	[A]	VDD= 5.0V, Black Pattern, Fv=60Hz
	Input Current (RMS)		0.72	0.87	[A]	VDD= 5.0V, Black Pattern, Fv=75Hz
PDD	VDD Power	-	3	3.6	[Watt]	VDD= 5.0V, Black Pattern, Fv=60Hz
PDD	Consumption		3.6	4.32	[Watt]	VDD= 5.0V, Black P <mark>atte</mark> rn, Fv=75Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-1
VDDrp	Allow <mark>a</mark> ble VDD Rip <mark>pl</mark> e Voltage	-	-	500	[mV]	VDD= 5.0V, Black Pattern, Fv=75Hz
VDDrp		-	-	500	[mV]	VDD= 5.0V, Black Pattern, Fv=75Hz

5.1.3 Electrical Characteristics

5.1.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Parameter		Min.	Тур.	Max.	Unit	Remarks
Power supply voltage for B ack light	V_{LED}	-	45	50	V	
Power supply Current for B ack light	I _{LED}	-	360	-	mA	
Power supply for Back light	P_{LED}	-	16.2	-	W	Note 1
LED Life Time	TLED	30000			Hrs	Note 2,3

Vio

GND

5.1.4 LVDS Specification a. DC Characteristics:

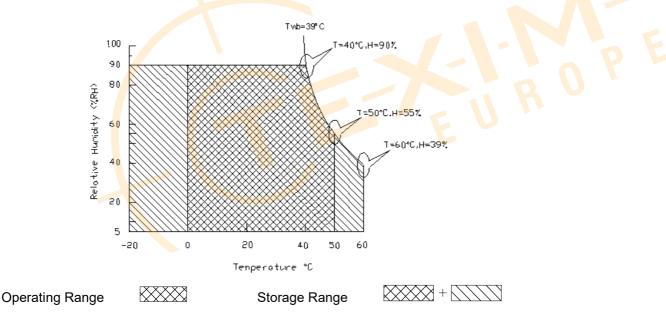
Symbol	Description	Min	Тур	Max	Units	Condition
V _{TH}	LVDS Differential Input High Threshold	-	-	+100	[mV]	V _{CM} = 1.2V
V _{TL}	LVDS Differential Input Low Threshold	-100	-	-	[mV]	V _{CM} = 1.2V
V _{ID}	LVDS Differential Input Voltage	100	-	600	[mV]	
V _{CM}	LVDS Common Mode Voltage	+1.0	+1.2	+1.5	[V]	V _{TH} -V _{TL} = 200mV

LVDS Signal Waveform:

0V

Use RxOCLK- & RxOCLK+ as example. Single-End **RxOCLK-**VTL **V**TH RxOCLK+ Vсм **Differential Signal** ^^ | ↓ **|V**ıD| ∨тн∱ _____ ↓ **|V**ı⊳| ↓

VtL.


6.0 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
TOP	Operating Temperature	0	+50	[°C]	Note 2-1
TGS	Glass surface temperature (operation)	0	+60	[°C]	Note 2-1 Function judged only
HOP	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

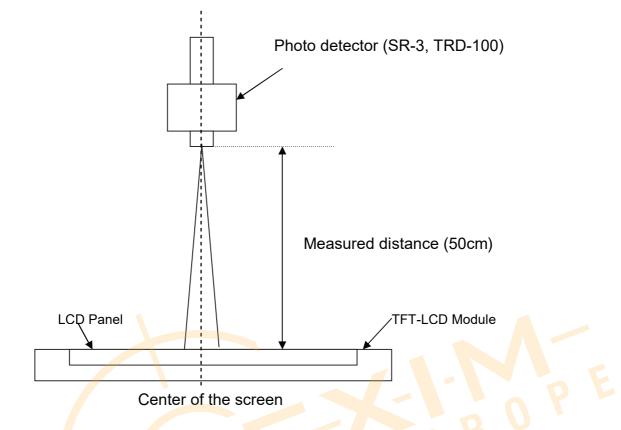
Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39 $\,$ or less. (Ta $\leq\!39^\circ\!{\rm C}$)
- 3. No condensation

7. Optical Characteristics

The optical characteristics are measured on the following test condition.

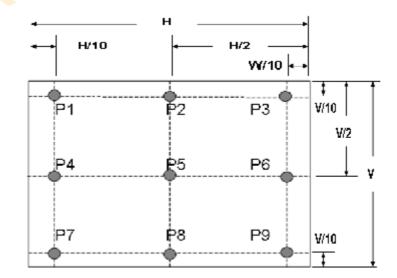
Test Condition:


- 1. Equipment setup: Please refer to *Note 2-2*.
- 2. Panel Lighting time: 30 minutes
- 3. VDD=5.0V, Fv=60Hz,Is=60mA,Ta=25

Symbo I	Description		Min.	Тур.	Max.	Unit	Remark
L _w	White Luminance (Center of screen)		900	1000	-	[cd/m2]	Note 2-2 By SR-3
L _{uni}	Luminance Uniformit	ty (9 points)	75	80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Cente	er of screen)	600	1000	-	-	Note 2-4 By SR-3
θ _R	Horizontal Viewing Angle	Right	75	89	-		by on o
θ_{L}	(CR=10)	Left	75	89	-		
Φ_{H}	Vertical Viewing Angle	Up	70	89	-		
$\Phi_{ m L}$	(CR=10)	Down	70	89	-	[degree]	Note 2-5
θ_{R}	Horizontal Viewing Angle	Right	75	89	-	[]	By SR-3
θ∟	(CR=5)	Left	75	89		K	
Φ_{H}	Vertical Viewing Angle	Up	70	89	2		
$\Phi_{\rm L}$	(CR=5)	Down	70	89	-		
T _R		Rising Time	-	3.8	5.5		Note 2-6
T _F	Response Time	Falling Time	-	1.2	2.5	[msec]	By
-		Rising + Falling	-	5	8		, TRD-100
R _x		Red x	0.615	0.645	0.675		
Ry		Red y	0.303	0.333	0.363		
G _x		Green x	0.290	0.320	0.350		
Gy	Color Coordinates	Green y	0.596	0.626	0.656		
B _x	(CIE 1931)	Blue x	0.123	0.153	0.183	-	By SR-3
By		Blue y	0.027	0.057	0.087		
W _x		White x	0.283	0.313	0.343		
Wy	White y		0.299	0.329	0.359		
СТ	Crosstalk			-	1.5	[%]	Note 2-7 By SR-3
F_{dB}	Flicker (Center of	screen)	-	-	-20	[dB]	Note 2-8 By SR-3

DISPLAY SMART LIFE

Note 2-2: Equipment setup :



Definition:

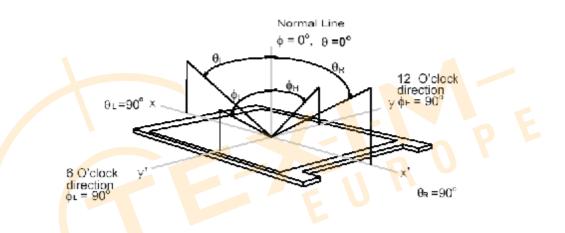
Luminance Uniformity = $\frac{\text{Minimum Luminance of 9 Points (P1 ~ P9)}}{\text{Maximum Luminance of 9 Points (P1 ~ P9)}}$

a. Test pattern: White Pattern

DISPLAY SMART LIFE

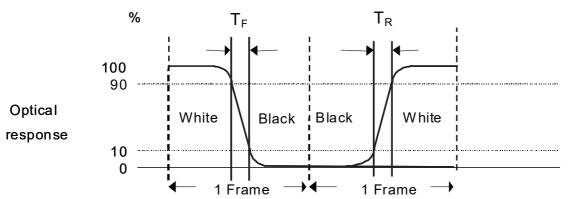
Note 2-4: Contrast Ratio Measurement

Definition:


 $Contrast Ratio = \frac{Luminance of White pattern}{Luminance of Black pattern}$

a. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta=\Phi=0^{\circ}$)

Note 2-5: Viewing angle measurement


Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right ($\theta_L \& \theta_R$) Vertical view angle: Divide to up & down ($\Phi_H \& \Phi_L$)

Note 2-6: Response time measurement

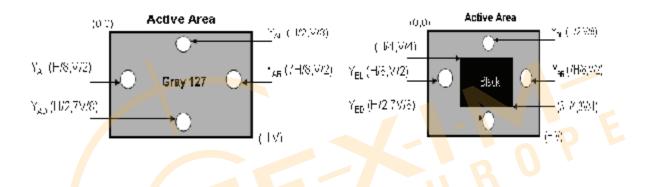
The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response. (*Black & White color definition: Please refer section 3.4.3*)

Note 2-7: Crosstalk measurement

Definition:

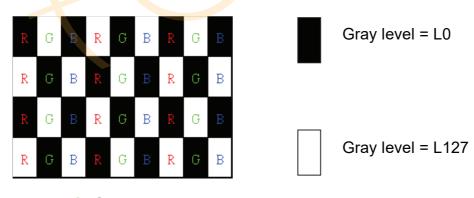
CT = Max. (CT_H,CT_V);

Where


a.Maximum Horizontal Crosstalk :

 $CT_{H} = Max. (|Y_{BL} - Y_{AL}| / Y_{AL} \times 100 \%, |Y_{BR} - Y_{AR}| / Y_{AR} \times 100 \%);$ Maximum Vertical Crosstalk:

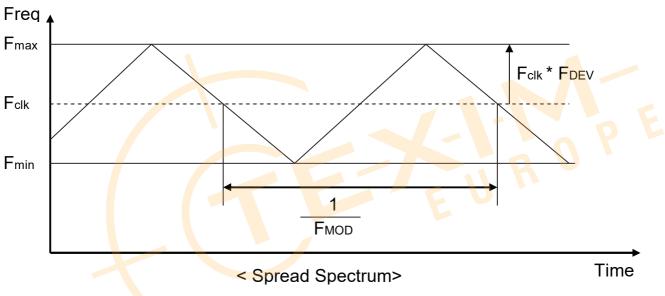
 $CT_V = Max. (|Y_{BU} - Y_{AU}| / Y_{AU} \times 100 \%, |Y_{BD} - Y_{AD}| / Y_{AD} \times 100 \%);$


b. Y_{AU} , Y_{AD} , Y_{AL} , Y_{AR} = Luminance of measured location without Black pattern

 Y_{BU} , Y_{BD} , Y_{BL} , Y_{BR} = Luminance of measured location with Black pattern

Note 2-8: Flicker measurement

a. Test pattern: It is listed as following.


R: Red, G: Green, B:Blue

b. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta=\Phi=0^{\circ}$)

b. AC Characteristics:

Symbol	Description	Min	Max	Unit	Remark
F _{DEV}	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

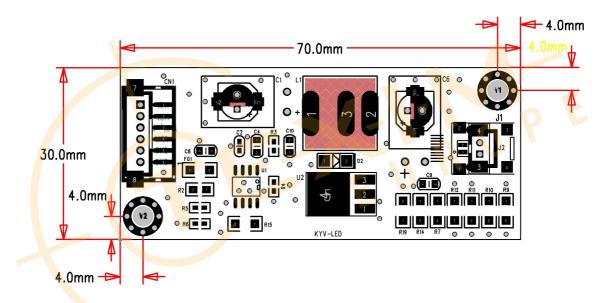
Symbol	Description		Min.	Тур.	Max.	Unit	Remark
Τv		Period	1036	1066	1873	Th	
Tdisp (v)	Vertical Section	Active	1024	1024	1024	Th	
Tblk (v)		Blanking	12	42	849	Th	
Fv		Frequency	50	60	76	Hz	
Th	Horizontal Section	Period	730	844	1320	Tclk	
Tdisp (h)		Active	640	640	640	Tclk	
Tblk (h)		Blanking	90	204	680	Tclk	
Fh		Frequency	51.8	64	93.7	KHz	Note 3-3
Tclk	LVDS Clock	Period	14.6	18.5	26	ns	1/Fclk
Fclk	0.000K	Frequency	37.8	54	68.4	MHz	Note 3-4

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.); Fh (Typ.) = Fclk (Typ.) / Th (Typ.); Fh (Max.)= Fclk (Max.) / Th (Min.);

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

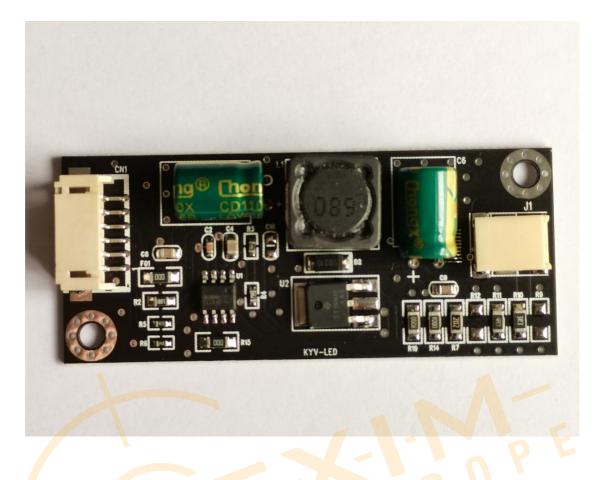
Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.); Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.); Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);


DISPLAY SMART LIFE

8.0 Constant flow plate

- 8.1. "to32(LED backlight)display/ 10.2" to 42
- "(LED backlight)display

9.0 Screen print of the


exterior

Length: 70mm Width: 30mm Height: 10mm (component height +PCB board thickness)

9.1 Appearance picture

10. Interface definition

CN1 Input interface

Pin sequence number	Definition	Description	
1	VCC	Power 12V	
2	VCC	Power 12V	
3	EN	Backlight control switch	
4	DIM	Backlight brightness adjustment 0-5V	
5	GND	Power ground	
6	GND	Power ground	

11. Reliability Test

reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark	
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 300hours		
High Temperature Operation (HTO)	Ta= 50 $^{\circ}$ C , 50%RH, 300hours		
Low Temperature Operation (LTO)	Ta= 0 $^{\circ}$ C, 300hours		
High Temperature Storage (HTS)	Ta= 60° C, 300hours		
Low Temperature Storage (LTS)	Ta= -20°C, 300hours		
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)		
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	E	
Drop Test	Height: 61 cm, package test 🧹 📃 📃	Y F	
Thermal Shock Test (TST)	-20°C/ <mark>30</mark> min, 60°C/30min, 100 cycles 📿 💛	Note 5-1	
On/Off Test	On/10sec, Off/10sec, 30,000 cycles		
ESD (Electro Static Discharge)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 5-2	
ESD (Electro Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 8 points, 25 times/ point.	NOLE J-2	
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft		

Note 5-1: a. A cycle of rapid temperature change consists of varying the temperature from -20 $^{\circ}$ C to 60 $^{\circ}$ C, and back again. Power is not applied during the test.

b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost Self-recoverable

No hardware failures.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Texim Europe B.V. its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Texim"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Texim makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.

It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time.

All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.

Please contact us if you have any questions about the contents of the datasheet.

This may not be the latest version of the datasheet. Please check with us if a later version is available.

Headquarters & Warehouse

Elektrostraat 17 NL-7483 PG Haaksbergen The Netherlands

T:	+31 (0)53 573 33 33
E:	info@texim-europe.com
Homepage:	www.texim-europe.com



The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 E: nl@texim-europe.com

Belgium

Zuiderlaan 14, box 10 B-1731 Zellik

T: +32 (0)2 462 01 00 E: belgium@texim-europe.com

UK & Ireland

St Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

T: +44 (0)1522 789 555 E: uk@texim-europe.com

Germany - North Bahnhofstrasse 92

D-25451 Quickborn

T: +49 (0)4106 627 07-0 E: germany@texim-europe.com

Germany - South

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: muenchen@texim-europe.com

Austria Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 E: austria@texim-europe.com

Stockholmsgade 45 2100 Copenhagen

T: +45 88 20 26 30 E: nordic@texim-europe.com

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 E: italy@texim-europe.com

www.texim-europe.com