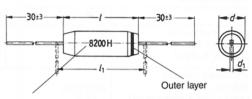
GP grade

Construction


- Wound capacitor
- Central axial leads
- Available on tape

Features

 Stabilized mechanical and electrical characteristics due to a special heat treatment

Application

- · RF and IF filters
- Timing circuits
- Resonant circuits

Legend:

Rated capacitance (pF)

Tolerance (code letter)

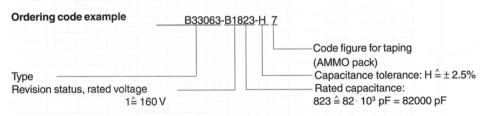
Rated voltage (uncoded or color ring)

Outer layer: Bar or color ring

Length I.2	/ , min	d,
11.0	15.0	0.6
16.5	20.0	0.8
21.5	25.0	0.8

Rated dc voltage U_{R} Color ring		160 V red	630 V black	
Type with marking of revision status and rated voltage		B 33063-B1	B 33063-B6	
Rated capacitance C _R		Dimensions (mm)		
Tolerance	pF	$d_{\text{max}} \times I_{\text{max}}$	$d_{\text{max}} \times I_{\text{max}}$	
± 1 pF ≙ F	2 to 20		4.0 x 11.0	
± 1 pF; ± 5 %	> 20 to 40		4.0 x 11.0	
± 1 pF; ± 2.5 %; ± 5 %	> 40 to 47		4.0 x 11.0	
	> 47 to 100	.010 (00.1	4.5 x 11.0	
	> 100 to 330		4.5 x 11.0	
	> 330 to 1 000	4.5 x 11.0	6.0 x 11.0	
	> 1 000 to 1 500	4.5 x 11.0	6.9 x 11.0	
	> 15 00 to 2 200	5.0 x 11.0	7.9 x 11.0	
	> 2 200 to 3 300	5.7 x 11.0	7.6 x 16.5	
	> 3 300 to 7 500	7.8 x 11.0	10.4 x 16.5	
± 1 % ≙ F	> 7 500 to 8 200	8.1 x 11.0	9.6 x 21.5	
± 2.5 % $\hat{=}$ H	> 8 200 to 10 000	8.7 x 11.0	10.4 x 21.5	
± 5 % $\hat{=}$ J	> 10 000 to 15 000	8.0 x 16.5	12.3 x 21.5	
	> 15 000 to 22 000	9.5 x 16.5	14.5 x 21.5	
	> 22 000 to 27 000	10.2 x 16.5		
	> 27 000 to 33 000	10.0 x 21.5		
	> 33 000 to 47 000	11.7 x 21.5	ordering information ref	
	> 47 000 to 82 000	15.0 x 21.5		
	> 82 000 to 100 000	16.5 x 21.5		

The dimensions apply to the highest capacitance value.


Diameters for lower capacitance values can be interpolated.

These capacitors are preferably available on tape. Please refer to chapter "Tape packaging".

Technical data

Туре	B 33063-E	31	B 33063-B6		
Rated dc voltage $U_{\rm sc}$ AC voltage $U_{\rm sc}$ Category $I=11.0~{\rm mm}$ current $I_{\rm c}$ $I=16.5~{\rm mm}$ $I=21.5~{\rm mm}$	0.00		630 V 210 V 1.0 A 1.2 A 1.5 A		
IEC climatic category (DIN IEC 68-1) Lower category temperature T_{max} Upper category temperature T_{max} Test duration Category values after damp heat test: Capacitance change $ \Delta C/C $ Dissipation factor tan δ_{F} Insulation resistance R _F			etakanai porasastra (1 septembril 1 septembr		
Climatic category DIN 40 040	GPE				Read Filters Timing cecuse
Capacitance drift $i_z^{1)}$	≤ (0.3 % +	- 0.4 pF)			shooro (rencasi)
Temperature coefficient α_{c} of capacitance $^{1)}$	- (100 to 3	300) · 10 ⁻⁶ / K			W.
Dissipation factor $\tan \delta$ (10 3) \leq 1 kHz $_{10 \text{ kHz}}$ $_{100 \text{ kHz}}$ $_{1000 \text{ kHz}}$ $_{1000 \text{ kHz}}$	≤ 100 pF - 0.2 0.3 0.4	1000 pF - 0.3 0.4 0.7	4 700 pl 0.2 0.3 0.5	0.3 0.4 -	0.5 - -
Insulation resistance R _i (minimum as-delivered value)	100 GΩ	23 25	0.8		

For ordering information refer to page 38.

 $[\]overline{}^{1)}$ for $C_R \ge 100$ pF