
PRELIMINARY
March 28, 2007

StreamEngine® 5160 and 5170 Communication Processors
Ten-Way Multithreaded Processors Optimized for Network Connectivity
1.0 Product Highlights
www.ubicom.com © 2005-2006 Ubico
To further optimize the IP51xx for networking infrastructure
and embedded client solutions, the processor includes
several key hardware support blocks, including true
random number generator and fixed-point multiply /
accumulate (MAC) units. The random number generator
facilitates robust software implementation of common
encryption / security protocols critical to the continued
growth of communication processing.

Key Features:
• 32-bit Multithreaded CPU — 270 MIPS or 350 MIPS
• IP51xx is optimized for communication processing

• Ten-way fine-grained multithreading
• Deterministic execution on all threads
• Zero overhead full context switching
• Programmable MIPS per thread
• Instruction Set Architecture optimized for packet processing

• Memory-to-memory architecture, powerful addressing modes
• Small, fast instruction set, strong bit manipulation
• Reduced code size vs. RISC CPUs

• On-chip program / data memory
• Eliminates cache miss penalties

• Highly configurable I/O support
• Many combinations of software I/O:

• Utopia, PCMCIA, IDE / ATAPI
• PCM Highway, UART, SPI, I2C

• MII ports of 10 / 100 PHY
• Two Serdes for fast serial I/O:

• USB, GPSI
• SPI, UART

• RGMII port
• PCI host
• High-Speed USB port

• Additional key hardware
• True random number generator for software-implemented

encryption / security (32-bit seed)
• Independent I/O and core CPU clocking

• Separate phase-locked loops (PLLs)
• Programmable multipliers & dividers
• Single low-cost crystal (12 MHz)
The StreamEngine 5160 and 5170 Communication
Processors (IP51xx) are revolutionary new platforms from
Ubicom, designed to provide highly integrated solutions
for applications at the “edge” of Internet connectivity,
including routers, bridges, gateways, and a wide variety of
embedded networked client solutions.

The IP51xx is optimized for efficient network processing in
embedded solutions. Its development has led to the
definition of a new microprocessor architecture:
Multithreaded Architecture for Software I/O (MASI). Many
MASI concepts were pioneered in the Ubicom IP2000™
family of processors, but the IP3000 family dramatically
extended those techniques by introducing hardware
support for eight threads operating with no context
switching overhead, as well as three-operand and
memory-to-memory operations. The IP5000 family further
expands this capability by extending the number of
threads from eight to ten.

The IP51xx, then, is a 32-bit CPU supporting ten-way
multithreaded operation. It provides for up to ten real-time
tasks to execute in a completely deterministic fashion. In
essence, the IP51xx supports running a different thread
on every clock, but without the overhead for context
switching typical with traditional microprocessor
architectures. To the system designer, the IP51xx
appears as if there were ten processors on the chip.

The multithreaded and deterministic nature of the IP51xx
processor provides for integration of numerous functions
on chip — some with on-chip hardware assist and some
entirely in software — as threads, including the ability to
support interfaces such as MII, USB, GPSI, Utopia,
PCMCIA, IDE, PCM Highway, RGMII, and PCI interfaces.
This yields both a high degree of flexibility and reduces die
size, as it eliminates the need for many on-chip dedicated
hardware blocks for specific functions.

The IP51xx employs a three-operand and memory-to-
memory architecture, utilizing on-chip program and data
memory support. This scheme enables highly efficient
data movement and processing on data. The result is that
the IP51xx is designed to support packet processing and
transfers at wire speeds, eliminating the need for large
data buffers typically found in use with traditional RISC-
based microprocessors.
m, Inc. All rights reserved. 1

IP51xx Data Sheet – March 28, 2007
Figure 1-1 IP51xx Block Diagram

GPIO

RGMII

MII

RMII

2x Serdes

High-Speed
USB

I/O Controller Main Processor
On-chip
Memory
(192 KB)

PCI
32 bits /

Data
Cache
8 KB

Instruction
Cache
16 KB

Flash
Controller

SDRAM
Controller

I/O Port Selector

Protocol C Bus

Peripherals
(Timers
Regs,
Security)

Debug

SD
R

AM
 c

on
tro

lle
r c

on
fig

.
Fl

as
h

co
nt

ro
lle

r c
on

fig
 a

nd
 d

at
a

pi
o.

Port A Port B Port C Port D Port E Port F Port G Port H Port I USB Port

Data Inst

I/O Subsystem

I/O
 m

ux
 c

on
tro

l

Reset

Debug
Port

33 MHz

Clocks
See Figure 3-4.
2 www.ubicom.com

IP51xx Data Sheet – March 28, 2007

www.ubicom.com 3

1.0 Product Highlights 1

2.0 Pin Definitions 4
2.1 Pin Assignments (256-Pin BGA) 4
2.2 Pin Descriptions . 7
2.3 I/O Ports Signal Maps . 8

3.0 System Architecture 13
3.1 CPU Registers . 13
3.2 Addressing Model . 17
3.3 Instruction Model . 17
3.4 Fast Multithreading Context Switch. 18
3.5 Instruction Level Multithreading 18
3.6 Programming and Debugging Support 20
3.7 Debugging Features . 20
3.8 Interrupts and Exceptions 21
3.9 Crystal Oscillator . 23
3.10 Clock Circuitry. 23
3.11 Reset . 25

4.0 Instruction Set 26
4.1 Operand Addressing . 26
4.2 Addressing Modes . 26
4.3 Instruction Set Summary. 29
4.4 Instruction Formats and Encoding. 34
4.5 Detailed Instruction Reference. 39

5.0 Programmer’s Reference 86
5.1 IP51xx Startup and Initialization 86
5.2 Interrupt Handling. 86
5.3 Using the Debug Port . 87
5.4 Data Cache . 96
5.5 Instruction Cache . 99
5.6 Statistics Counters . 102
5.7 Flash Controller Programming Model 102
5.8 DDR SDRAM Programming Model 105
5.9 MII Controller Programming Model 112
5.10 PCI Controller Programming Model 114
5.11 GMAC Programming Model 117
5.12 USB Controller Programming Model. 120
5.13 On-Chip Memory Programming Model 123
5.14 Processor Programming Model 124
5.15 Security Block Programming Model 127
5.16 Clocks Programming Model 128
5.17 Random Number Generator 128
5.18 Reset . 129
5.19 Programming Restrictions 130
5.20 Programming Errata . 138
5.21 Writing Assembly Code. 141

6.0 Peripherals 145
6.1 Overview . 145
6.2 Shared Port Architecture. 145
6.3 External Flash Controller (FC) 147
6.4 External DDR SDRAM Controller 148
6.5 Serializer/Deserializer (Serdes) 149
6.6 Media Independent Interface (MII) 159
6.7 PCI Interface . 161
6.8 GMAC Interface . 163
6.9 High-Speed USB Interface 164
6.10 Debug Port . 165

7.0 Memory Reference 166
7.1 Alphabetical List of Registers. 166
7.2 Per-Thread Registers . 172
7.3 Global Registers. 176
7.4 HRT Tables . 182
7.5 On-Chip Peripherals . 183
7.6 Per-Port Registers . 197
7.7 Port A Registers . 203
7.8 Port B Registers . 207
7.9 Port D Registers . 218
7.10 Port E Registers . 222
7.11 Port F Registers . 225
7.12 Port G Registers. 236
7.13 Port H Registers . 247
7.14 Port I Registers. 247
7.15 USB Port Registers . 248

8.0 Electrical Specifications 278
8.1 Absolute Maximum Ratings 278
8.2 DC Specifications. 279
8.3 AC Specifications . 283

9.0 Package Dimensions 285

10.0 Part Numbering 286

11.0 Revision History of This Document 287

IP51xx Data Sheet – March 28, 2007
2.0 Pin Definitions

2.1 Pin Assignments (256-Pin BGA)

Figure 2-1 IP51xx BGA Pin Assignments (Top View Through Package)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

A
PD0 PD1 PD5 PD8 DDR_CAL PG2 VDD_PLLDDR PG8 PG18 PG14 PG17 DDR_CLK DDR_CLKN DDR_CLKFBN DDR_CLKFB PG25

PC31 PD2 PD6 PD9 PA1 PG3 PG4 PG7 PG12 DDR_ODT PG16 PG19 PG20 PG22 PG24 PG26

PC30 PD3 PD10 PA2 PA5 PG1 PG6 PG9 PG11 PG13 PG15 DDRG_VREF PG21 PG23 PG27 PG28

PC27 PD4 PA4 PA6 PA3 PG0 PG5 PG10 DDRG_VREF VDDG_RC VDDG VDDG_RC DDRH_VREF PG30 PG29 PG31

PC26 PC25 PA7 PA0 VDDG VDDG VDD_D VDD_D VDDG VDD_D VDDG VDDG PH0 PH3 PH2 PH1

PC22 PC21 PD11 PD7 VDD_IO VDD_D VSS VSS VSS VSS VSS VDD_D VDDH PH6 PH5 PH4

PC20 PC19 PC29 PC28 VDD_D VSS VSS VSS VSS VSS VSS VDDH PH9 PH8 PH7 PI0

PC18 PC17 PC24 PC23 VDD_IO VSS VSS VSS VSS VSS VSS VDDH VDD_D VDD_D VDDH_RC PI1

PC15 PC16 PC14 PC13 VDD_D VSS VSS VSS VSS VSS VSS VDD_D VDD_D VDD_D PI3 PI2

PC11 PC12 PC10 PC9 VDD_IO VSS VSS VSS VSS VSS VSS VDD_D VDD_IO VDD_IO PI5 PI4

PC7 PC8 PC4 PC3 VDD_D VSS VSS VSS VSS VSS VSS VDD_D VDDF VDD_IO PI11 PI6

PC6 PC5 PC0 PB17 VDD_IO VDD_D VDD_IO VDD_D VDDU VDD_D VDD_D VDDF VDDF_PD PF4 PI10 PI7

PC2 PC1 PB18 PB16 PB14 PB4 PB0 PE4 TEST2 USB2_VBUS PF15 PF12 PF5 PF_VREF PF6 PI8

PB19 PB11 PB12 PB13 PB15 PB1 PE6 PE3 TEST1 USB2_RBIAS PF14 PF8 PF9 PF7 PF2 PI9

PB10 PB9 TSO TSI PB5 PB2 PE7 PE2 RSTN USB2_ID PF13 PF11 PF10 PF3 PF1 PF0

TSCK TSSN PB8 PB7 PB6 PB3 PE5 PE1 PE0 TEST0 USB2_P USB2_N OSC_OUT OSC_IN VDD_PLLCGVDDU_P
4 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Figure 2-2 IP51xx BGA Pin Assignments (Bottom View)

12345678910111213141516

12345678910111213141516

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

A
PD0PD1PD5PD8DDR_CALPG2VDD_PLLDDRPG8PG18PG14PG17DDR_CLKDDR_CLKNDDR_CLKFBNDDR_CLKFBPG25

PC31PD2PD6PD9PA1PG3PG4PG7PG12DDR_ODTPG16PG19PG20PG22PG24PG26

PC30PD3PD10PA2PA5PG1PG6PG9PG11PG13PG15DDRG_VREFPG21PG23PG27PG28

PC27PD4PA4PA6PA3PG0PG5PG10DDRG_VREFVDDG_RCVDDGVDDG_RCDDRH_VREFPG30PG29PG31

PC26PC25PA7PA0VDDGVDDGVDD_DVDD_DVDDGVDD_DVDDGVDDGPH0PH3PH2PH1

PC22PC21PD11PD7VDD_IOVDD_DVSSVSSVSSVSSVSSVDD_DVDDHPH6PH5PH4

PC20PC19PC29PC28VDD_DVSSVSSVSSVSSVSSVSSVDDHPH9PH8PH7PI0

PC18PC17PC24PC23VDD_IOVSSVSSVSSVSSVSSVSSVDDHVDD_DVDD_DVDDH_RCPI1

PC15PC16PC14PC13VDD_DVSSVSSVSSVSSVSSVSSVDD_DVDD_DVDD_DPI3PI2

PC11PC12PC10PC9VDD_IOVSSVSSVSSVSSVSSVSSVDD_DVDD_IOVDD_IOPI5PI4

PC7PC8PC4PC3VDD_DVSSVSSVSSVSSVSSVSSVDD_DVDDFVDD_IOPI11PI6

PC6PC5PC0PB17VDD_IOVDD_DVDD_IOVDD_DVDDUVDD_DVDD_DVDDFVDDF_PDPF4PI10PI7

PC2PC1PB18PB16PB14PB4PB0PE4TEST2USB2_VBUSPF15PF12PF5PF_VREFPF6PI8

PB19PB11PB12PB13PB15PB1PE6PE3TEST1USB2_RBIASPF14PF8PF9PF7PF2PI9

PB10PB9TSOTSIPB5PB2PE7PE2RSTNUSB2_IDPF13PF11PF10PF3PF1PF0

TSCKTSSNPB8PB7PB6PB3PE5PE1PE0TEST0USB2_PUSB2_NOSC_OUTOSC_INVDD_PLLCG VDDU_P
www.ubicom.com 5

IP51xx Data Sheet – March 28, 2007
Table 2-1 Pin Assignments (sorted by pin number)
Pin Signal Pin Signal Pin Signal Pin Signal
A1 PD0 E1 PC26 J1 PC15 N1 PC2
A2 PD1 E2 PC25 J2 PC16 N2 PC1
A3 PD5 E3 PA7 J3 PC14 N3 PB18
A4 PD8 E4 PA0 J4 PC13 N4 PB16
A5 DDR_CAL E5 VDDG J5 VDD_D N5 PB14
A6 PG2 E6 VDDG J6 VSS N6 PB4
A7 VDD_PLLDDR E7 VDD_D J7 VSS N7 PB0
A8 PG8 E8 VDD_D J8 VSS N8 PE4
A9 PG18 E9 VDDG J9 VSS N9 TEST2

A10 PG14 E10 VDD_D J10 VSS N10 USB2_VBUS
A11 PG17 E11 VDDG J11 VSS N11 PF15
A12 DDR_CLK E12 VDDG J12 VDD_D N12 PF12
A13 DDR_CLKN E13 PH0 J13 VDD_D N13 PF5
A14 DDR_CLKFBN E14 PH3 J14 VDD_D N14 PF_VREF
A15 DDR_CLKFB E15 PH2 J15 PI3 N15 PF6
A16 PG25 E16 PH1 J16 PI2 N16 PI8
B1 PC31 F1 PC22 K1 PC11 P1 PB19
B2 PD2 F2 PC21 K2 PC12 P2 PB11
B3 PD6 F3 PD11 K3 PC10 P3 PB12
B4 PD9 F4 PD7 K4 PC9 P4 PB13
B5 PA1 F5 VDD_IO K5 VDD_IO P5 PB15
B6 PG3 F6 VDD_D K6 VSS P6 PB1
B7 PG4 F7 VSS K7 VSS P7 PE6
B8 PG7 F8 VSS K8 VSS P8 PE3
B9 PG12 F9 VSS K9 VSS P9 TEST1

B10 DDR_ODT F10 VSS K10 VSS P10 USB2_RBIAS
B11 PG16 F11 VSS K11 VSS P11 PF14
B12 PG19 F12 VDD_D K12 VDD_D P12 PF8
B13 PG20 F13 VDDH K13 VDD_IO P13 PF9
B14 PG22 F14 PH6 K14 VDD_IO P14 PF7
B15 PG24 F15 PH5 K15 PI5 P15 PF2
B16 PG26 F16 PH4 K16 PI4 P16 PI9
C1 PC30 G1 PC20 L1 PC7 R1 PB10
C2 PD3 G2 PC19 L2 PC8 R2 PB9
C3 PD10 G3 PC29 L3 PC4 R3 TSO
C4 PA2 G4 PC28 L4 PC3 R4 TSI
C5 PA5 G5 VDD_D L5 VDD_D R5 PB5
C6 PG1 G6 VSS L6 VSS R6 PB2
C7 PG6 G7 VSS L7 VSS R7 PE7
C8 PG9 G8 VSS L8 VSS R8 PE2
C9 PG11 G9 VSS L9 VSS R9 RSTN

C10 PG13 G10 VSS L10 VSS R10 USB2_ID
C11 PG15 G11 VSS L11 VSS R11 PF13
C12 DDRG_VREF G12 VDDH L12 VDD_D R12 PF11
C13 PG21 G13 PH9 L13 VDDF R13 PF10
C14 PG23 G14 PH8 L14 VDD_IO R14 PF3
C15 PG27 G15 PH7 L15 PI11 R15 PF1
C16 PG28 G16 PI0 L16 PI6 R16 PF0
D1 PC27 H1 PC18 M1 PC6 T1 TSCK
D2 PD4 H2 PC17 M2 PC5 T2 TSSN
D3 PA4 H3 PC24 M3 PC0 T3 PB8
D4 PA6 H4 PC23 M4 PB17 T4 PB7
D5 PA3 H5 VDD_IO M5 VDD_IO T5 PB6
D6 PG0 H6 VSS M6 VDD_D T6 PB3
D7 PG5 H7 VSS M7 VDD_IO T7 PE5
D8 PG10 H8 VSS M8 VDD_D T8 PE1
D9 DDRG_VREF H9 VSS M9 VDDU T9 PE0

D10 VDDG_RC H10 VSS M10 VDD_D T10 TEST0
D11 VDDG H11 VSS M11 VDD_D T11 USB2_P
D12 VDDG_RC H12 VDDH M12 VDDF T12 USB2_N
D13 DDRH_VREF H13 VDD_D M13 VDDF_PD T13 OSC_OUT
D14 PG30 H14 VDD_D M14 PF4 T14 OSC_IN
D15 PG29 H15 VDDH_RC M15 PI10 T15 VDDU_P
D16 PG31 H16 PI1 M16 PI7 T16 VDD_PLLCG

Table 2-2 Pin Assignments (sorted by signal name)
Signal Pin Signal Pin Signal Pin Signal Pin

DDR_CAL A5 PC25 E2 PG20 B13 VDD_D M10
DDR_CLK A12 PC26 E1 PG21 C13 VDD_D M11
DDR_CLKFBN A14 PC27 D1 PG22 B14 VDD_IO F5
DDR_CLKFB A15 PC28 G4 PG23 C14 VDD_IO H5
DDR_CLKN A13 PC29 G3 PG24 B15 VDD_IO K5
DDR_ODT B10 PC30 C1 PG25 A16 VDD_IO K13
DDRG_VREF C12 PC31 B1 PG26 B16 VDD_IO K14
DDRG_VREF D9 PD0 A1 PG27 C15 VDD_IO L14
DDRH_VREF D13 PD1 A2 PG28 C16 VDD_IO M5
OSC_IN T14 PD2 B2 PG29 D15 VDD_IO M7
OSC_OUT T13 PD3 C2 PG30 D14 VDD_PLLCG T16

PA0 E4 PD4 D2 PG31 D16 VDD_PLLDDR A7
PA1 B5 PD5 A3 PH0 E13 VDDF L13
PA2 C4 PD6 B3 PH1 E16 VDDF M12
PA3 D5 PD7 F4 PH2 E15 VDDF_PD M13
PA4 D3 PD8 A4 PH3 E14 VDDG D11
PA5 C5 PD9 B4 PH4 F16 VDDG E5
PA6 D4 PD10 C3 PH5 F15 VDDG E6
PA7 E3 PD11 F3 PH6 F14 VDDG E9
PB0 N7 PE0 T9 PH7 G15 VDDG E11
PB1 P6 PE1 T8 PH8 G14 VDDG E12
PB2 R6 PE2 R8 PH9 G13 VDDG_RC D10
PB3 T6 PE3 P8 PI0 G16 VDDG_RC D12
PB4 N6 PE4 N8 PI1 H16 VDDH F13
PB5 R5 PE5 T7 PI2 J16 VDDH G12
PB6 T5 PE6 P7 PI3 J15 VDDH H12
PB7 T4 PE7 R7 PI4 K16 VDDH_RC H15
PB8 T3 PF_VREF N14 PI5 K15 VDDU M9
PB9 R2 PF0 R16 PI6 L16 VDDU_P T15
PB10 R1 PF1 R15 PI7 M16 VSS F7
PB11 P2 PF2 P15 PI8 N16 VSS F8
PB12 P3 PF3 R14 PI9 P16 VSS F9
PB13 P4 PF4 M14 PI10 M15 VSS F10
PB14 N5 PF5 N13 PI11 L15 VSS F11
PB15 P5 PF6 N15 RSTN R9 VSS G6
PB16 N4 PF7 P14 TEST0 T10 VSS G7
PB17 M4 PF8 P12 TEST1 P9 VSS G8
PB18 N3 PF9 P13 TEST2 N9 VSS G9
PB19 P1 PF10 R13 TSCK T1 VSS G10
PC0 M3 PF11 R12 TSI R4 VSS G11
PC1 N2 PF12 N12 TSO R3 VSS H6
PC2 N1 PF13 R11 TSSN T2 VSS H7
PC3 L4 PF14 P11 USB2_ID R10 VSS H8
PC4 L3 PF15 N11 USB2_N T12 VSS H9
PC5 M2 PG0 D6 USB2_P T11 VSS H10
PC6 M1 PG1 C6 USB2_RBIAS P10 VSS H11
PC7 L1 PG2 A6 USB2_VBUS N10 VSS J6
PC8 L2 PG3 B6 VDD_D E7 VSS J7
PC9 K4 PG4 B7 VDD_D E8 VSS J8
PC10 K3 PG5 D7 VDD_D E10 VSS J9
PC11 K1 PG6 C7 VDD_D F6 VSS J10
PC12 K2 PG7 B8 VDD_D F12 VSS J11
PC13 J4 PG8 A8 VDD_D G5 VSS K06
PC14 J3 PG9 C8 VDD_D H13 VSS K07
PC15 J1 PG10 D8 VDD_D H14 VSS K08
PC16 J2 PG11 C9 VDD_D J5 VSS K09
PC17 H2 PG12 B9 VDD_D J12 VSS K10
PC18 H1 PG13 C10 VDD_D J13 VSS K11
PC19 G2 PG14 A10 VDD_D J14 VSS L6
PC20 G1 PG15 C11 VDD_D K12 VSS L7
PC21 F2 PG16 B11 VDD_D L5 VSS L8
PC22 F1 PG17 A11 VDD_D L12 VSS L9
PC23 H4 PG18 A9 VDD_D M6 VSS L10
PC24 H3 PG19 B12 VDD_D M8 VSS L11
6 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
2.2 Pin Descriptions
Type Codes: I = Digital Input, AI = Analog Input, O = Output, Z = Tristateable, P = Power, PU = On-Chip Pullup,

PD = On-Chip Pulldown, ST = Schmitt Trigger, NS = Non-Slew Rate Limited

Table 2-3 Pin Descriptions

Name Type Output
Current

Input
Voltage Supply Description

DDR_CAL I/O Calibrator pin for input and output impedance calibration

DDR_CLK O,Z Clock output to DDR SDRAM

DDR_CLKN O,Z Clock output to DDR SDRAM (inverted)

DDR_CLKFB I Clock input from DDR SDRAM

DDR_CLKFBN I Clock input from DDR SDRAM (inverted)

DDR_ODT O,Z Output to DDR SDRAM (also sensed by the IP51xx to
determine internal configuration).

DDRG_VREF I DDR SDRAM voltage reference from port G

DDRH_VREF I DDR SDRAM voltage reference from port H

OSC_IN AI Crystal clock input

OSC_OUT O Crystal clock output

PA[6,4:0] I/O 8mA 0-5.5V VDD_IO Port A. Refer to Table 2-5.

PA[7,5] I/O, NS 8mA 0-5.5V VDD_IO Port A. Refer to Table 2-5.

PB[19,17:0] I/O 8mA 0-5.5V VDD_IO Port B. Refer to Table 2-6.

PB18 I/O, NS 12mA 0-5.5V VDD_IO Port B. Refer to Table 2-6.

PC[31:0] I/O 8mA 0-5.5V VDD_IO Port C. Refer to Table 2-7.

PD[11:0] I/O 8mA 0-5.5V VDD_IO Port D. Refer to Table 2-8.

PE[7:0] I/O 8mA 0-5.5V VDD_IO Port E. Refer to Table 2-9.

PF_VREF I Input threshold level — reference voltage level for input
comparator

PF[15:0] I/O 8.1mA not 5V
tolerant

VDDF /
VDDF_PD

Port F. Refer to Table 2-10.

PG[31:0] I/O 8.1mA not 5V
tolerant

VDDG /
VDDG_RC

Port G. Refer to Table 2-11.

PH[9:0] I/O 8.1mA not 5V
tolerant

VDDH /
VDDH_RC

Port H. Refer to Table 2-12.

PI[11:0] I/O 8mA 0-5.5V VDD_IO Port I. Refer to Table 2-13.

RSTN I,ST,PU 0-5.5V VDD_IO Assert to 0 for chip reset. See Note 1.

TEST0, TEST1,
TEST2

I,PD 0-5.5V VDD_IO Test mode pins. Connect to VSS. See Note 1.

TSCK I,ST,PD 0-5.5V VDD_IO Debug Interface Clock (used only for in-system
programming and debug).

TSI I,ST,PU 0-5.5V VDD_IO Debug Interface Serial Data Input (used only for in-
system programming and debug).
www.ubicom.com 7

IP51xx Data Sheet – March 28, 2007
2.3 I/O Ports Signal Maps
The ten I/O ports are designated Port A, Port B, ... , Port I,
and USB Port. Every port is capable of multiple functions,
except the USB port, which is dedicated to USB.
Programs select the function of a port by programming the
port’s function select register. Behavior of each I/O port’s
signals depends on the function selected for that port.

Table 2-4 shows the overall organization of the I/O ports.
Table 2-5 through Table 2-14 show the signal
assignments for each function of each port. Refer also to
Section 6.0 on page 145 for more detail and for
explanations of terms.

TSO O,Z 8 mA 5V
tolerant
when Z

VDD_IO Debug Interface Serial Data output (used only for in-
system programming and debug; high Z unless TSSN
low). 5V tolerant when tristated.

TSSN I,ST,PU 0-5.5V VDD_IO Debug Interface Slave Select, active low (used only for in-
system programming and debug). See Note 1.

USB2_ID I If this input is high, then this port is a USB peripheral port.
If this input is low, then this port is a USB host port.

USB2_N I/O 5V
tolerant

USB data on USB port (negative)

USB2_P I/O 5V
tolerant

USB data on USB port (positive)

USB2_RBIAS O Tie this to VSS with a 9.1 Kohm (± 1%) resistor. This will
give an output of 1.2V ± 3%.

USB2_VBUS I/PD 5V
tolerant

The IP51xx senses whether this is 5V or floating — if it is
floating, then the IP51xx can output on a GPIO to turn on
a circuit to supply 5V to the USB2 bus. A 200 ohm resistor
is recommended between 5V and the USB2_VBUS pin,
so that transients in the 5V supply won’t cause the
USB2_VBUS pin to go above 5.25V.

VDD_D P 1.2V VDD for digital core

VDD_IO P 3.3V VDD for GPIO I/Os

VDD_PLLCG P 1.2V VDD for core and I/O PLLs (clock generator)

VDD_PLLDDR P 1.2V VDD for DDR SDRAM and DDR SDRAM Deskew PLLs

VDDF 2.5/3.3V VDD for Port F: 2.5V for Gigabit Ethernet, 3.3V for GPIO.

VDDF_PD 3.3V VDD for Port F Gigabit Ethernet predriver

VDDG 1.8/2.5V VDDQ (I/O supply) for Port G SDRAM DDRL

VDDG_RC 2.5V VDD for DDRL Receiver

VDDH 1.8/2.5V VDDQ (I/O supply) for Port H SDRAM DDRH

VDDH_RC 2.5V VDD for DDRH Receiver

VDDU 3.3V VDD for USB2 PHY I/O

VDDU_P P 1.2V VDD for USB2 PHY PLL

VSS P 0V VSS for all digital core, I/Os, and PLLs

Note 1: Ubicom recommends not relying on internal pullup or pulldown.

Table 2-3 Pin Descriptions (continued)

Name Type Output
Current

Input
Voltage Supply Description
8 www.ubicom.com

IP51xx Data Sheet – March 28, 2007

Table 2-4 Port Function Summary

Port Port
Width Function 0 Function 1 Function 2 Function 3

A 8 GPIO Flash / INT /
Clock

GPIO /
INT /
Clock

GPIO /
INT

B 20 GPIO PCI --- ---
C 32 GPIO PCI

(I/O only)
Reserved ---

D 12 GPIO Serdes
(240 MHz)

Reserved ---

E 8 GPIO Serdes
(250 MHz)

Reserved MII / RMII

F 16 GPIO GMAC
(MII / RMII /
RGMII)

--- ---

G 32 GPIO DDR SDRAM --- ---
H 10 GPIO DDR SDRAM --- ---
I 12 GPIO N/A Reserved MII (Port E

Extension)
USB
Port

2 N/A High-Speed
USB

N/A N/A

Table 2-5 Port A Signal Map

Bit #
PA[n]

Function 0
(GPIO)

Function 1
(Flash,

INT,Clock)

Function 2
(GPIO,

INT,Clock)

Function 3
(GPIO,

INT)
0 GPIO SI GPIO GPIO
1 GPIO SO GPIO GPIO
2 GPIO SCK GPIO GPIO
3 GPIO CE_N GPIO GPIO
4 GPIO GPIO /

INT_0
GPIO /
INT_0

GPIO /
INT_0

5 GPIO GPIO /
INT_1 /
CLOCK_0
(250 MHz)

GPIO /
INT_1 /
CLOCK_0
(250 MHz)

GPIO /
INT_1

6 GPIO GPIO /
INT_2

GPIO /
INT_2

GPIO /
INT_2

7 GPIO GPIO /
CLOCK_1
(Core Clock)

GPIO /
CLOCK_1
(Core Clock)

GPIO

Table 2-6 Port B Signal Map
Bit #
PB[n]

Function 0
(GPIO)

Function 1
(PCI)

Function 2
(reserved)

Function 3
(reserved)

0 GPIO DEVSEL_N --- ---
1 GPIO PERR_N --- ---
2 GPIO STOP_N --- ---
3 GPIO SERR_N --- ---
4 GPIO TRDY_N --- ---
5 GPIO FRAME_N --- ---
6 GPIO IRDY_N --- ---
7 GPIO PAR --- ---
8 GPIO CBE[0] --- ---
9 GPIO CBE[1] --- ---

10 GPIO CBE[2] --- ---
11 GPIO CBE[3] --- ---
12 GPIO REQ0_N --- ---
13 GPIO GNT0_N --- ---
14 GPIO REQ1_N --- ---
15 GPIO GNT1_N --- ---
16 GPIO RST_N --- ---
17 GPIO CLK --- ---
18 GPIO CLK_OUT --- ---
19 GPIO INTA --- ---
www.ubicom.com 9

IP51xx Data Sheet – March 28, 2007

Table 2-7 Port C Signal Map
Bit #
PC[n]

Function 0
(GPIO)

Function 1
(PCI)

Function 2
(reserved)

Function 3
(reserved)

0 GPIO AD[00] --- ---
1 GPIO AD[01] --- ---
2 GPIO AD[02] --- ---
3 GPIO AD[03] --- ---
4 GPIO AD[04] --- ---
5 GPIO AD[05] --- ---
6 GPIO AD[06] --- ---
7 GPIO AD[07] --- ---
8 GPIO AD[08] --- ---
9 GPIO AD[09] --- ---

10 GPIO AD[10] --- ---
11 GPIO AD[11] --- ---
12 GPIO AD[12] --- ---
13 GPIO AD[13] --- ---
14 GPIO AD[14] --- ---
15 GPIO AD[15] --- ---
16 GPIO AD[16] --- ---
17 GPIO AD[17] --- ---
18 GPIO AD[18] --- ---
19 GPIO AD[19] --- ---
20 GPIO AD[20] --- ---
21 GPIO AD[21] --- ---
22 GPIO AD[22] --- ---
23 GPIO AD[23] --- ---
24 GPIO AD[24] --- ---
25 GPIO AD[25] --- ---
26 GPIO AD[26] --- ---
27 GPIO AD[27] --- ---
28 GPIO AD[28] --- ---
29 GPIO AD[29] --- ---
30 GPIO AD[30] --- ---
31 GPIO AD[31] --- ---

Table 2-8 Port D Signal Map

Bit #
PD[n]

Function 0
(GPIO)

Function 1
(Serdes)

(240 MHz)
Function 2
(reserved)

Function 3
(reserved)

0 GPIO RXD --- ---
1 GPIO RXM --- ---
2 GPIO RXP --- ---
3 GPIO CLK --- ---
4 GPIO TXME --- ---
5 GPIO TXM --- ---
6 GPIO TXP --- ---
7 GPIO TXPE --- ---
8 GPIO GPIO --- ---
9 GPIO GPIO --- ---

10 GPIO GPIO --- ---
11 GPIO GPIO --- ---

Table 2-9 Port E Signal Map

Bit #
PE[n]

Function 0
(GPIO)

Function 1
(Serdes)

(250 MHz)
Function 2
(reserved)

Function 3
(MII / RMII)

0 GPIO RXD --- RX_CLK /
REF_CLK

1 GPIO RXM --- RXD[0] /
TXD[0]

2 GPIO RXP --- RXD[1] /
TXD[1]

3 GPIO CLK --- RXD[2] /
TX_EN

4 GPIO TXME --- RXD[3] /
RX_ER

5 GPIO TXM --- RX_DV /
CRS_DV

6 GPIO TXP --- RX_ER /
RXD[0]

7 GPIO TXPE --- COL /
RXD[1]
10 www.ubicom.com

IP51xx Data Sheet – March 28, 2007

Table 2-10 Port F Signal Map

Bit #
PF[n]

Function 0
(GPIO)

Function 1
(MII / RMII

RGMII)
Function 2
(reserved)

Function 3
(reserved)

0 GPIO TXD[0] /
TXD[0] /
TXD[0]

--- ---

1 GPIO TXD[1] /
TXD[1] /
TXD[1]

--- ---

2 GPIO TXD[2] /
N/A /
TXD[2]

--- ---

3 GPIO TXD[3] /
N/A /
TXD[3]

--- ---

4 GPIO TX_ER /
N/A /
N/A

--- ---

5 GPIO TX_EN /
TX_EN /
TX_CTL

--- ---

6 GPIO TX_CLK /
REF_CLK_I /
N/A

--- ---

7 GPIO COL /
REF_CLK_O/
TX_CLK_O

--- ---

8 GPIO RXD[0] /
RXD[0] /
RXD[0]

--- ---

9 GPIO RXD[1] /
RXD[1] /
RXD[1]

--- ---

10 GPIO RXD[2] /
N/A /
RXD[2]

--- ---

11 GPIO RXD[3] /
N/A /
RXD[3]

--- ---

12 GPIO RX_ER /
RX_ER /
N/A

--- ---

13 GPIO RX_DV /
N/A /
RX_CTL

--- ---

14 GPIO RX_CLK /
N/A /
RX_CLK

--- ---

15 GPIO CRS /
CRS_DV
N/A

--- ---

N/A: Not applicable for that mode (RMII and/or RGMII)

Table 2-11 Port G Signal Map
Bit #

PG[n]
Function 0

(GPIO)
Function 1
(DDR SDRAM)

Function 2
(reserved)

Function 3
(reserved)

0 GPIO ADDR[13] --- ---
1 GPIO ADDR[12] --- ---
2 GPIO ADDR[11] --- ---
3 GPIO ADDR[09] --- ---
4 GPIO ADDR[08] --- ---
5 GPIO ADDR[07] --- ---
6 GPIO ADDR[06] --- ---
7 GPIO ADDR[05] --- ---
8 GPIO ADDR[04] --- ---
9 GPIO ADDR[03] --- ---

10 GPIO ADDR[02] --- ---
11 GPIO ADDR[01] --- ---
12 GPIO ADDR[00] --- ---
13 GPIO ADDR[10] --- ---
14 GPIO CS_N --- ---
15 GPIO CAS_N --- ---
16 GPIO BA2 --- ---
17 GPIO BA1 --- ---
18 GPIO BA0 --- ---
19 GPIO RAS_N --- ---
20 GPIO WE_N --- ---
21 GPIO CKE --- ---
22 GPIO DM / LDM --- ---
23 GPIO DQ[7] --- ---
24 GPIO DQ[6] --- ---
25 GPIO DQ[5] --- ---
26 GPIO DQ[4] --- ---
27 GPIO LDQS --- ---
28 GPIO DQ[3] --- ---
29 GPIO DQ[2] --- ---
30 GPIO DQ[1] --- ---
31 GPIO DQ[0] --- ---
www.ubicom.com 11

IP51xx Data Sheet – March 28, 2007

Table 2-12 Port H Signal Map
Bit #
PH[n]

Function 0
(GPIO)

Function 1
(DDR SDRAM)

Function 2
(reserved)

Function 3
(reserved)

0 GPIO UDM --- ---
1 GPIO DQ[15] --- ---
2 GPIO DQ[14] --- ---
3 GPIO DQ[13] --- ---
4 GPIO DQ[12] --- ---
5 GPIO UDQS --- ---
6 GPIO DQ[11] --- ---
7 GPIO DQ[10] --- ---
8 GPIO DQ[09] --- ---
9 GPIO DQ[08] --- ---

Table 2-13 Port I Signal Map
Bit #
PI[n]

Function 0
(GPIO)

Function 1
(reserved)

Function 2
(reserved)

Function 3
(MII)

0 GPIO --- --- TX_CLK /
TX_CLK_OUT

1 GPIO --- --- TXD[0]
2 GPIO --- --- TXD[1]
3 GPIO --- --- TXD[2]
4 GPIO --- --- TXD[3]
5 GPIO --- --- TX_EN
6 GPIO --- --- TX_ER
7 GPIO --- --- CRS
8 GPIO --- --- GPIO
9 GPIO --- --- GPIO

10 GPIO --- --- GPIO
11 GPIO --- --- GPIO

Table 2-14 USB Port Signal Map

Pin Name Function 1
(USB)

USB2_ID ID
USB2_N dataN
USB2_P dataP
USB2_RBIAS rBias
USB2_VBUS vbus
12 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
3.0 System Architecture
The central feature of the IP51xx architecture is hardware
multithreading, with zero-overhead context switching
between hardware threads. All registers that contain
context-specific information are duplicated for each of ten
hardware threads. The CPU hardware is capable of
switching from one hardware thread to another, on a
cycle-by-cycle basis with no switching delay. This design
enables deterministic and extremely efficient interrupt
response, which in turn supports the creation of software
peripherals. A software peripheral is a combination of
simple peripheral I/O hardware, and control logic
implemented in software, rather than custom peripheral
hardware.

3.1 CPU Registers
The IP51xx features 16 general-purpose 32-bit data
registers, eight 32-bit address registers (A0-A6, A7/SP),
multiply/multiply-accumulate (ACC) registers, and various
other registers. These registers reside in the register
address space, an address space separate from the
indirect registers and memory. Instructions reference the
registers within the register address space directly (as
opposed to indirectly through offsets from an address
base register). There is no capability for indirect
referencing of registers in the register address space.

Every register in the register address space is 32 bits
wide.

There are two distinct groups of registers in the register
address space:

• Per-Thread Registers
• Global Registers

Some registers are described as read-only. Do not write
to a read-only register. Writes to these registers do not
change the state of the register, but may cause
undesirable side effects.

Some registers are described as write-only. Reads of
these registers return undefined results.

3.1.1 Per-Thread Registers
Per-thread registers define the architectural state of one
hardware thread. The first 64 registers are per-thread;
that is, to support immediate context switching (without
the overhead of saving and restoring these registers in
software), the per-thread register set is duplicated for
each of the ten hardware-supported threads, as shown in
Figure 3-1. Table 3-1 shows the locations of these
registers in the register space.

Refer also to Section 7.2 for detailed register descriptions.

Table 3-1 Per-Thread Register Map
Address Register(s) Description
000-03C D0–D15 General-purpose data

registers.
040-07C Reserved
080-098 A0–A6 32-bit address registers.

09C A7 or SP 32-bit stack pointer, also
referred to as A7.

0A0 ACC0_HI High 32 bits of MAC, DSP,
and multiplier result.

0A4 ACC0_LO Low 32 bits of MAC, DSP,
and multiplier result.

0A8 MAC_RC16 Multiply-accumulate result,
rounded and clipped.

0AC SOURCE3 Implicit third source operand
for certain instructions.

0B0 INST_CNT Count of executed
instructions.

0B4 CSR Control codes and status
register.

0B8 ROSR Read-only status register.
0BC IREAD_DATA IREAD result
0C0 INT_MASK0 Thread interrupt mask.
0C4 INT_MASK1 Thread interrupt mask.

0C8-0CC Reserved
0D0 PC 32-bit Program Counter.
0D4 TRAP_CAUSE Cause of most recent trap.
0D8 ACC1_HI High 32 bits of DSP result.
0DC ACC1_LO Low 32 bits of DSP result.
0E0 PREVIOUS_

PC
Program Counter value for
last successfully executed
instruction for this thread.

0E4-0FC Reserved
www.ubicom.com 13

IP51xx Data Sheet – March 28, 2007
Figure 3-1 Per-Thread, Global, and Indirect Registers, and Indirect Memory

3.1.2 Global Registers
Registers at addresses 0x100 and greater are global; that
is, shared among all threads. Table 3-2 shows the
addresses of these registers in the register space. Refer
also to Section 7.3 for detailed register descriptions.

Registers containing bits that can be set by hardware are
generally read-only. To enable software to set or clear bits

in these registers, there are associated “write-only” set
and clear registers. A value written to a “set” register is
atomically ORed, on the next cycle, with the
corresponding hardware register. The complement of a
value written to a “clear” register is atomically ANDed, on
the next cycle, with the corresponding hardware register.

CONTEXT #9
CONTEXT #8

CONTEXT #7
CONTEXT #6

CONTEXT #5
CONTEXT #4

CONTEXT #3
CONTEXT #2

CONTEXT #1
CONTEXT #0

0000 0000

4003 FFFC

100

3FC
See Table 3-2.

See Table 3-3.

31 0

31 0

31 0

0D0

0C4
0C0

0BC

0B8

0B4

0B0

0AC

0A8

0A4

0A0

09C

080
03C

000 D0 - D15
GENERAL PURPOSE

REGISTERS
(32 bits wide)

A0 - A7
ADDRESS REGISTERS

(32 bits wide)

ACC0_HI

ACC0_LO

MAC_RC16

SOURCE3

INST_CNT

CSR

ROSR

IREAD_DATA

INT_MASK0
INT_MASK1

PC

Per-Thread
Registers

Global
Registers

Indirect
Registers
and Memory

TRAP_CAUSE

ACC1_HI

ACC1_LO

Previous PC

0D4

0D8

0DC

0E0
14 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 3-2 Global Register Map
Address Register(s) Description Type

100 CHIP_ID Chip ID Read Only
104
108

INT_STAT0
INT_STAT1 Interrupt Status Read Only

10C-110 Reserved
114
118

INT_SET0
INT_SET1 Set Interrupt Status Write Only

11C-120 Reserved
124
128

INT_CLR0
INT_CLR1 Clear Interrupt Status Write Only

12C-130 Reserved
134 GLOBAL_CTRL Processor function control bits Read/Write
138 MT_ACTIVE Threads’ active/inactive status Read Only
13C MT_ACTIVE_SET Set bits of MT_ACTIVE register Write Only
140 MT_ACTIVE_CLR Clear bits of MT_ACTIVE register Write Only
144 MT_DBG_ACTIVE Threads’ Debug Active status Read Only
148 MT_DBG_ACTIVE_SET Set bits of MT_DBG_ACTIVE register Write Only
14C MT_EN Multithreading Enable Read/Write
150 MT_HPRI Multithreading High Priority Thread mask for non-real-

time (NRT) threads
Read/Write

154 MT_HRT Multithreading Hard Real Time Thread (HRT) mask Read/Write
158 MT_BREAK Multithreading BKPT executed mask Read Only
15C MT_BREAK_CLR Clear bits of MT_BREAK register Write Only
160 MT_SINGLE_STEP Multithreading Single Step mask Read/Write
164 MT_MIN_DELAY_EN Multithreading Minimum Delay Enable mask Read/Write
168 MT_BREAK_SET Set bits of MT_BREAK register Write Only
16C Reserved
170 DCAPT Write Trap Address Read/Write

174-178 Reserved
17C MT_DBG_ACTIVE_CLR Clear bits of MT_DBG_ACTIVE register Write Only
180 SCRATCHPAD0

Four scratchpad registers Read/Write
184 SCRATCHPAD1
188 SCRATCHPAD2
18C SCRATCHPAD3

190-19C Reserved
1A4 MT_I_BLOCKED Thread blocked due to instruction fetch (1 bit / thread) Read Only
1A8 MT_D_BLOCKED Thread blocked due to data access (1 bit / thread) Read Only
1AC MT_I_BLOCKED_SET Set bits of MT_I_BLOCKED register Write Only
1B0 MT_D_BLOCKED_SET Set bits of MT_D_BLOCKED register Write Only
1B4 MT_BLOCKED_CLR Clear bits of MT_I_BLOCKED and MT_D_BLOCKED Write Only
1B8 MT_TRAP_EN Multithreading Enable Traps mask Read/Write
1BC MT_TRAP Multithreading Trap (set by hardware when an

enabled trap occurs, or by writing to MT_TRAP_SET)
Read Only

1C0 MT_TRAP_SET Set bits of MT_TRAP Write Only
www.ubicom.com 15

IP51xx Data Sheet – March 28, 2007
1C4 MT_TRAP_CLR Clear bits of MT_TRAP Write Only
1C8-1FC Reserved

200 I_RANGE0_HI Instruction space memory range 0 high Read/Write
204 I_RANGE1_HI Instruction space memory range 1 high Read/Write
208 I_RANGE2_HI Instruction space memory range 2 high Read/Write

20C-21C Reserved
220 I_RANGE0_LO Instruction space memory range 0 low Read/Write
224 I_RANGE1_LO Instruction space memory range 1 low Read/Write
228 I_RANGE2_LO Instruction space memory range 2 low Read/Write

22C-23C Reserved
240 I_RANGE0_EN Instruction space memory range 0 thread enables Read/Write
244 I_RANGE1_EN Instruction space memory range 1 thread enables Read/Write
248 I_RANGE2_EN Instruction space memory range 2 thread enables Read/Write

24C-25C Reserved
260 D_RANGE0_HI Data space memory range 0 high Read/Write
264 D_RANGE1_HI Data space memory range 1 high Read/Write
268 D_RANGE2_HI Data space memory range 2 high Read/Write
26C D_RANGE3_HI Data space memory range 3 high Read/Write

270-27C Reserved
280 D_RANGE0_LO Data space memory range 0 low Read/Write
284 D_RANGE1_LO Data space memory range 1 low Read/Write
288 D_RANGE2_LO Data space memory range 2 low Read/Write
28C D_RANGE3_LO Data space memory range 3 low Read/Write

290-29C Reserved
2A0 D_RANGE0_EN Data space memory range 0 thread enables Read/Write
2A4 D_RANGE1_EN Data space memory range 1 thread enables Read/Write
2A8 D_RANGE2_EN Data space memory range 2 thread enables Read/Write
2AC D_RANGE3_EN Data space memory range 3 thread enables Read/Write

2B0-3FC Reserved

Table 3-2 Global Register Map (continued)
Address Register(s) Description Type
16 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
3.2 Addressing Model
The IP51xx has an on-chip 192 KB SRAM memory used
for both data and instructions (program). Using separate
data and address buses for the data and instruction
accesses, instruction fetches and data operand accesses
are done concurrently without any contention or waiting.
The data access allows up to one 32-bit operand read and
one 32-bit operand write in each clock cycle. Instruction
memory and data memory have nonoverlapping
addresses; so, the data and instruction address space
can be treated as a single unified 32-bit space. The actual
allocation of the memory ranges for instructions and data
is specified in the global register space (Table 3-2)
beginning at address 200.

CPU registers belong to an address space separate from
data and program memory address spaces.

Table 3-3 shows how the entire indirect and program
address space is allocated.

All memories use byte addressing, although all accesses
to instruction memory and registers are in 32-bit word
multiples, 32-bit word-aligned. Data accesses vary in
width, depending on instruction. Operand addressing in
data memory is big-endian – i.e., the most significant byte
has the lowest address. Bit numbering within registers
and instruction and data memory is little-endian, with bit 0
being the least significant bit.

3.3 Instruction Model
Instructions perform memory-memory operations, as well
as memory-register, register-memory, and register-
register operations. A variety of addressing modes are
available. Instructions are 32-bits wide, and execute at the
rate of one per cycle.

Table 3-3 Indirect and Program Space Address Map
Address Range Function

0000 0000–0000 07FC Reserved
0000 0800–0000 083C HRT Table 0

See Table 7-4.
0000 0840–0000 08FC Reserved
0000 0900–0000 093C HRT Table 1

See Table 7-4.
0000 0940–00FF FFFC Reserved
0100 0000–0100 0FFC On-chip peripherals

(includes timers and debug
port). For data (indirect)
space, these on-chip
peripherals occupy 4 KB.
For instruction space, there
is 16 MB available at this
block of addresses.
See Table 7-5.

0100 1000–01FF FFFC Reserved
0200 0000–0200 FFFC I/O ports (64 KB).

See Table 7-16
0201 0000–02FF FFFC Reserved
0300 0000–0302 FFFC On-chip SRAM (192 KB) *
0303 0000–3FFF FFFC Reserved
4000 0000–47FF FFFC External DDR SDRAM

(128 MB)
4800 0000–5FFF FFFC Reserved
6000 0000–60FF FFFC External Flash (16 MB) **
6100 0000–FFFF FFFC Reserved

* Ubicom software aliases On-chip SRAM to
3FFC 0000 – 3FFE FFFC.

**Flash memory is aliased to several different ranges of
addresses. Ubicom software uses the range
6000 0000 – 60FF FFFC. At start-up, the CPU begins
executing at address 6000 0000.
www.ubicom.com 17

IP51xx Data Sheet – March 28, 2007
3.4 Fast Multithreading Context Switch
A context is all of the state information for a given task or
thread – all the information must be saved when the flow
of program execution for a given thread is interrupted, so
that the thread can restart as if no interrupt had occurred.
The context consists of the following pieces:

• Per-thread registers.
• Data memory area used by the given thread.
• Control and status registers of peripheral support

logic that is used by the given thread. For example, if
Port A is used by a thread, then its setting and status
are part of the context.

The IP51xx and its programming environment support
fast context switching in the following ways:

• Per-thread register file with 10 sets of the context-
dependent registers, one set of registers for each
thread.

• Indexed addressing for data memory. The index
registers are themselves part of the per-thread
register file.

• Compilation, linking, loading tool chain that provides
unique base addresses for each task. All addressing
modes for the data memory are address-register-
based, so it is possible to have multiple instances of a
software thread executing on different data sets.

With this hardware support for context switching, each
virtual peripheral has a unique view of memory and the
programming model that is unaffected by and mostly
unaware of other virtual peripherals that may exist.

Furthermore, because the important registers are
duplicated for each context, there is no need to save or
restore any registers when switching between different
threads. Therefore, a context switch can occur in zero-
time between instructions.

3.5 Instruction Level Multithreading
Each set of per-thread registers defines a thread. Each
thread is identified by an integer in the range 0–9 which
corresponds to its entry in per-thread register file.

Several global registers contain information that the CPU
uses to schedule execution of the threads:

• MT_ACTIVE, and the corresponding
MT_ACTIVE_SET, and MT_ACTIVE_CLR

• MT_DBG_ACTIVE, and the corresponding
MT_DBG_ACTIVE_SET, and
MT_DBG_ACTIVE_CLR

• MT_EN
• MT_HPRI
• MT_HRT

• MT_BREAK, and the corresponding
MT_BREAK_SET, and MT_BREAK_CLR

• MT_SINGLE_STEP
• MT_MIN_DELAY_EN
• MT_I_BLOCKED, and the corresponding

MT_I_BLOCKED_SET
• MT_D_BLOCKED, and the corresponding

MT_D_BLOCKED_SET
• MT_BLOCKED_CLR
• MT_TRAP_EN
• MT_TRAP, and the corresponding MT_TRAP_SET,

and MT_TRAP_CLR

All of the above registers are structured as bit maps,
where each bit position corresponds to a thread; for
example, bit 0 corresponds to thread 0, bit 1 corresponds
to thread 1, etc. Bits 31:10 are reserved.

3.5.1 Scheduling Table (HRT)
The IP51xx uses two Hard-Real-Time (HRT) tables to
control thread scheduling. The HRT tables are located at
fixed memory addresses (shown in Table 3-3). One of the
two HRT tables is active and being used by the CPU; the
other is available for updates. The HRT Table Select bit in
the GLOBAL_CTRL register determines which is the
active table.

Each of the 64 HRT table entries is 8 bits wide. Table
entries are contiguous in memory, one entry per byte. An
HRT entry has the format shown in Table 3-4.

Each entry in the table represents an available instruction
cycle and specifies the thread (if any) to which that cycle
is allocated. Software controls how many of the 64 table
entries are actually used by setting bit 7 in the last used

Table 3-4 HRT Entry
Bit

Field Description

 7 End of Table.
1 = The next entry executed will be entry zero

of the table indicated by the HRT Table
Select bit in the GLOBAL_CTRL register.

0 = Not end of table.
6 Unoccupied Entry.

1 = This time slot is available for a Non-Real-
Time (NRT) thread.

0 = The thread indicated by Thread Number
should be scheduled if it is schedulable.

5:4 Reserved.
3:0 Thread Number.
18 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
entry. The HRT table must have at least one element with
bit 7 set.

At each cycle, the CPU steps to the next entry in the
current HRT table and determines which thread to
execute based on the information in that entry. After it has
processed the last entry of the table, it checks the global
HRT Table Select bit and goes to entry zero of the
currently selected HRT table.

At power-up or reset, bit 6 is cleared and bit 7 is set in all
entries (each entry is an unoccupied end-of-table entry).
Software must ensure that the active HRT table has at
least one entry with the End of Table (bit 7) set. If no entry
has bit 7 set, the result is undefined.

3.5.2 Scheduling Policies
For scheduling purposes, threads are defined as:

• HRT – A thread whose bit in the MT_HRT register is
1. An HRT thread can only be scheduled in time slots
allocated to it by the current HRT Table.

• NRT – A thread whose bit in the MT_HRT register is
0. NRT threads can be scheduled both in the HRT
table and by the round-robin scheduler.

The IP51xx implements three scheduling policies:

1. Hard-Real-Time (Time-Division Multiplexing) – An
HRT thread is guaranteed to receive CPU cycles in
proportion to the number of its HRT Table entries.

2. Round-Robin – NRT threads are scheduled on a
round-robin basis (in rotation) during the CPU
cycles when either no HRT thread is allocated or
the allocated HRT thread is not ready.

3. Priority – Among the NRT threads, those threads
whose bit in the MT_HPRI register is set to 1 have
high priority; others have low priority. No low-priority
NRT threads receive a CPU allocation as long as
there are active high-priority NRT threads.

Note that it is possible for an NRT thread to have time
slots allocated to it in the HRT table. Such a thread
participates in round-robin scheduling but is also
guaranteed to receive a minimum level of service from the
CPU in proportion to the number of its entries in the HRT
Table.

3.5.3 Schedulable Threads
For a thread to be considered for scheduling in the
instruction pipe, the following conditions must be true for
that thread. A thread is considered to be “schedulable”
when these conditions are satisfied:

• The debug interface has not halted the processor
(dbg_mp_halt is deasserted).

• The thread must be enabled (MT_EN is set).
• The thread must be active (MT_ACTIVE is set).
• The thread must not be halted due to a debug

condition (MT_DBG_ACTIVE is set).
• The thread must not be blocked on the instruction port

(MT_I_BLOCKED is cleared).
• The thread must not be blocked on the data port

(MT_D BLOCKED is cleared).
• Minimum instruction spacing enforcement is turned

off for this thread (MT_MIN_DELAY_EN is not set), or
minimum instruction spacing enforcement is turned
on for this thread (MT_MIN_DELAY_EN is set), but
the minimum spacing requirement has been met.

The MT_xx values in the list above are individual bits
defined for each thread in the corresponding MT_xx
global registers. See Table 7-3 for details about these
registers.

3.5.4 Hard Real-Time (HRT) Scheduling
The static schedule for HRT threads is specified by the
HRT Table.

Figure 3-2 shows an HRT example with three threads in a
table that is eight entries long. Thread 1 is scheduled 50%
of the time, thread 2 is scheduled 25% of the time and
thread 3 is scheduled 12.5% of the time. With the IP51xx
clocked at 270 MHz, this would equate to 135, 67.5, and
33.75 MIPS, respectively. The vacant slot in the last entry
of the table guarantees that at least 33.75 MIPS remain
available for NRT thread execution.

Each HRT thread is guaranteed to be allocated the
instruction slots specified in the table, when it is ready to
use them, provided it is schedulable. Thus each HRT
thread has guaranteed deterministic performance.

The interrupt latency for each HRT thread is deterministic
within the resolution of its static allocation. The pipeline
length determines the latency and the time until the thread
is next scheduled. The added scheduling jitter can be
considered to be the same as an asynchronous interrupt
synchronizing with a synchronous clock. For example, a
thread with 25% allocation will have deterministic interrupt
latency with respect to a clock running at 25% of the
system clock.
www.ubicom.com 19

IP51xx Data Sheet – March 28, 2007
Figure 3-2 HRT Thread Table Example

Although the HRT Table reserves the instruction slots for
the hard real-time threads this does not mean that other
threads cannot sometimes execute in that instruction slot.
For example a UART in thread 3 will actually be idle most
of the time. It only needs deterministic performance when
it is sending or receiving, and there is no need for it to be
scheduled when it is not active. All vacant instruction slots
and all slots that are allocated to threads that are not
schedulable are used by the scheduler for dynamically
schedulable (round-robin) threads.

3.5.5 Round-Robin (NRT) Scheduling
As the name suggests, round-robin threads are
scheduled in turn, with one instruction initiated from each
schedulable thread. Round-robin threads are scheduled
in the vacant slots in the HRT table and in slots where the
HRT or NRT thread specified by the table is not
schedulable.

Two levels of priority are supported for NRT threads: low
and high. Priority is controlled by the thread’s bit in the
global MT_HPRI register. If any high priority thread has its
MT_EN and MT_ACTIVE bits set (regardless of its
MT_DBG_ACTIVE bit), no low priority thread will be
scheduled. This is true even if the high priority thread is
not ready to execute.

3.5.6 Suspend
A thread can temporarily remove itself from scheduling
activity with the SUSPEND instruction. SUSPEND clears
the MT_ACTIVE bit for the current thread, so that the
thread will not be scheduled. An interrupt condition for that
thread asserts the MT_ACTIVE and re-enables normal
scheduling of the thread.

3.5.7 Startup
At startup or after reset, thread 0 is active, debug active,
and enabled, and all other threads are disabled. Thread 0
begins execution at the fixed flash ROM address
6000 0000, and is responsible for initialization; for
example:

• Load instructions into the on-chip SRAM;
• Load an HRT table and all thread control registers

(including PC);
• Initialize global semaphores and shared memory.

When the initialization is complete, thread 0 enables the
other initialized threads, which then are free to execute.

3.6 Programming and Debugging Support
The IP51xx has advanced in-system programming and
debug support on-chip. This unobtrusive capability is
provided through a dedicated Debug Interface. There is
no need for a bond-out chip for software development.
This eliminates concerns about differences in electrical
characteristics between a bond-out chip and the actual
chip used in the target application. Designers can test and
revise code on the same part used in the actual
application.

Ubicom provides the complete Red Hat GNUPro tools,
including C compiler, assembler, linker, utilities, and GNU
debugger. In addition, Ubicom offers an integrated
graphical development environment which includes an
editor, project manager, graphical user interface for the
GNU debugger, device programmer, and ipModule™
configuration tool, and profiler.

The IP51xx’s external flash memory can be
reprogrammed through the debug port (in-system)
regardless of the contents of the flash. It is not required to
have specific supporting software within the flash to allow
in-system reprogramming to take place.

3.7 Debugging Features
The IP51xx has a number of mechanisms that are
intended for use by Ubicom’s debug kernel, and that
support an off-chip debugging system. These
mechanisms include:

• MT_DBG_ACTIVE active register
• MT_SINGLE_STEP register
• Breakpoint instruction BKPT and breakpoint interrupt
• SUSPEND instruction
• MT_BREAK Register
• Debug mailboxes and the Debug Mailbox Interrupt
• DCAPT register and Trap

1
2
3
4
5
6
7
8

#1
#2
#1
#3
#1
#2
#1

Vacant

7 6 5 4 3 2 1 0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1

Clock Cycles

Thread Number Reserved

Unoccupied

End of Table

Thread #1: 125 MIPS
Thread #2: 62.5 MIPS
Thread #3: 31.25 MIPS

Va
ria

bl
e

Le
ng

th
 T

hr
ea

d
Ta

bl
e

(H
R

T)
20 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
• Minimum Instruction Delay

3.7.1 Single-Step
The MT_SINGLE_STEP register bit allows a controlling
thread to single-step threads that are being debugged.
This feature is enabled (on a per-thread basis) by setting
the MT_SINGLE_STEP bit that corresponds to the thread
being single-stepped. When this bit is set, the thread
being debugged is executed as scheduled by the
multithreading features. Simultaneously, the CPU clears
that thread's MT_DBG_ACTIVE bit, so that the thread will
not be activated until software sets the MT_DBG_ACTIVE
bit again.

3.7.2 Breakpoints
Debugging breakpoints are supported by the Program
Breakpoint interrupt, the BKPT instruction, and the
MT_DBG_ACTIVE register.

The BKPT instruction suspends the thread that executes
it and clears its MT_DBG_ACTIVE bit. In addition, the
BKPT instruction can suspend additional threads and
clear their MT_DBG_ACTIVE bits. The source operand is
a bit mask that specifies which additional contexts to
suspend.

The BKPT instruction asserts the MT_BREAK bit of the
current thread (so that the debug kernel knows which
thread executed the BKPT instruction) and asserts the
Program Breakpoint interrupt (if enabled).

3.7.3 Write Address Trap
The DCAPT register can be loaded with a register or data
address. Any write to the address in the DCAPT register
triggers a Trap. The DCAPT register can't be disabled, but
can be loaded with a value that can never match. A value
that can never match is one with bit 0 equal to 1 and bits
31:13 not equal to all 0's; for example: 0x8000 0001.

A trap is also asserted upon detection of out-of-range or
operand misalignment errors.

Whenever a Trap is asserted, the PC and TRAP_CAUSE
registers for the affected thread capture the program
counter value and the reason for the interrupt.

3.7.4 Debug Mailboxes
The Debug Mailboxes are the software visible portion of
the debug port. The debug kernel uses the Debug
Mailboxes to receive requests from an external debugging
system and to return results. The Debug Mailbox Interrupt

signals to the debug kernel regarding arrival or departure
of mailbox messages.

3.7.5 Execution Control
Some of the CPU’s instruction execution parameters can
be modified by Ubicom’s debug kernel to aid in
debugging.

When a thread’s bit in the MT_MIN_DELAY_EN register
is set, the Minimum Instruction Delay value of the
GLOBAL_CTRL register (refer to Section 7.3.4) is
applied. This value is the minimum number of clocks
between instructions of the same thread.

3.8 Interrupts and Exceptions
Interrupts are signaled by setting bits in the global
Interrupt Status register. This is a 64-bit register (in two
32-bit parts, INT_STAT0 and INT_STAT1), with each bit
representing a potential interrupt source. When a bit is set
to 1, it asserts the associated interrupt condition.

Bits in the Interrupt Status register corresponding to I/O
interrupts give the state of the corresponding I/O
interrupt(s). Other bits can be set by hardware or by
software (via the Interrupt Set register). If there is no
hardware source associated with a particular bit, that bit
represents a software interrupt. However, even if there is
a hardware source (other than I/O) associated with an
interrupt status bit, the bit can still be set by software. This
makes it possible to simulate interrupts for software
testing.

Once an interrupt status bit is set, it remains set until
explicitly cleared by software (via the Interrupt Clear
Register). No automatic interrupt acknowledge signal is
sent to an originating peripheral device – neither when the
interrupt status bit is set, nor when an interrupt handler
responds to it. If an acknowledgement is needed, it is the
responsibility of the interrupt handling software to send it,
by writing to the appropriate peripheral register.

Note: I/O interrupts must be cleared by writing to the
appropriate I/O control register, not by directly clearing the
INT_STAT bit.

Section 7.3.2 and Section 7.3.3 show the mapping of
interrupt status bits to specific interrupt sources.

3.8.1 INT_STAT[0-1] Registers
The INT_STAT[0-1] registers are dedicated to interrupts:
www.ubicom.com 21

IP51xx Data Sheet – March 28, 2007
• Asynchronous Error Interrupt. Used to report any
serious error that is asynchronous to the instruction
stream.

• Real-Time Compare Register Interrupt.
• Program Breakpoint / Trap Interrupt. This interrupt

indicates that one or more threads has been halted,
as a result of execution of the BKPT instruction, or
that one or more of 13 possible trap interrupts has
occurred. When a trap occurs, cause(s) of the trap are
indicated by bits set in the TRAP_CAUSE register.
Refer to Section 7.2.3 for details.

• Debug Port Interrupt. Indicates that a debug message
is waiting or has been successfully sent.

• I/O Interrupts. Most I/O functions can generate a
variety of interrupts, which are visible in INT_STAT0
and INT_STAT1. Each I/O function has a Interrupt
Status register giving the cause of the interrupt and
the interrupt bit itself. Several I/O interrupts might be
shared by a single INT_STAT bit.

• A block of ten fine-grained timer interrupts is
associated with a corresponding block of ten 32-bit
timer registers. When the value held in a given timer
register matches the value of the global cycle count
register, the corresponding interrupt is asserted.

3.8.2 Interrupt Set and Clear Registers
INT_STAT0 and INT_STAT1 can be read by software, but
they cannot be written directly. Instead, special Interrupt
Set (INT_SET0 and INT_SET1) and Interrupt Clear
(INT_CLR0 and INT_CLR1) registers are defined (see
Table 7-3). These are 64-bit registers that parallel
INT_STAT0 and INT_STAT1. Writing a 1 to a bit position
in INT_SET0 and INT_SET1 sets the corresponding bit in
the INT_STAT0 and INT_STAT1. Likewise, writing a 1 to
a bit position in INT_CLR0 and INT_CLR1 clears the
corresponding bit in INT_STAT0 and INT_STAT1. Other
bits in INT_STAT0 and INT_STAT1 are not affected.

3.8.3 Thread Interrupt Mask
Each hardware context has a pair of 32-bit Interrupt Mask
registers, INT_MASK[0-1], that determine the interrupts to
which it responds (see Table 7-2). The masks are logically
ANDed with the contents of the corresponding Interrupt
Status registers; if the result is non-zero, an interrupt
condition is signaled to the associated hardware thread,
setting the INTERRUPT CONDITION bit of its ROSR
register. If the thread is currently suspended, it is made
active. If it is currently active, it remains active, continuing
normal execution. However, if it executes a SUSPEND
instruction, the presence of the pending interrupt will
immediately reactivate it.

The Interrupt Mask register is a per-context read-write
register. It is normally written only at start-up, however, to
configure the assignment of interrupts to hardware
threads.

3.8.4 Breakpoint and Trap Registers
When the breakpoint / trap interrupt is triggered, software
should look at the MT_BREAK and MT_TRAP registers to
determine whether the cause was a breakpoint or a trap
(or both).

The MT_BREAK global read-only register has one bit per
hardware thread. If the bit for a given thread is set, it
indicates that the thread is halted for a break condition.
The interrupt handler for the breakpoint / trap interrupt can
read this register to determine which thread is halted for a
break condition.

Bits in the MT_BREAK register are cleared by software,
by writing to the Multithreading Break Clear
(MT_BREAK_CLR) register. Clearing one of these bits
does not restart the corresponding thread; setting the
MT_DEBUG_ACTIVE bit accomplishes that.

The MT_TRAP global read-only register also has one bit
per hardware thread. If the bit for a given thread is set, it
indicates that the thread is halted because of a trap. The
interrupt handler for the breakpoint / trap interrupt can
read this register to determine which thread is halted for a
trap. It can then read the TRAP_CAUSE register for that
thread to determine the cause of the trap.

Bits in the MT_TRAP register are cleared by software, by
writing to the Multithreading TRAP Clear
(MT_TRAP_CLR) register. Clearing one of these bits
does not restart the corresponding thread; setting the
MT_DEBUG_ACTIVE bit accomplishes that.

3.8.5 Forcing an Interrupt
As mentioned in connection with the Interrupt Mask
register, the presence of an interrupt condition signaled to
a thread serves merely to reawaken the thread, if it is
suspended, or to cancel its suspension, if it is running and
executes a SUSPEND instruction. For high priority
interrupts with dedicated handler threads, the system
design requirement for the interrupt handling time to be
less than the inter-arrival time of the interrupt guarantees
that the handler will be suspended when the interrupt
arrives. Interrupt response, in that case, is immediate.

When independent interrupts share a common interrupt
handler thread, it is possible for the handler to be active,
responding to a previous interrupt, when a new interrupt
arrives. Handling of the new interrupt will then be delayed
22 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
until handling of the previous interrupt is completed, and
the interrupt handler thread issues a SUSPEND.

In order to minimize interrupt latency for interrupts
handled by a common handling thread, the handling
functions should be kept short. In some cases, that means
using the common interrupt handling thread as a “front
end”, to force a vectored interrupt to an extended ISR in a
thread running a lower priority background process. The
instruction sequence to accomplish this is:

1. Halt the target thread by clearing its bit in the
Multithreading Enable (MT_EN) register. Note that
this does not force the cancellation of any
instructions for that thread that are already in the
pipe; it merely keeps the thread scheduler from
allocating any more cycles to the target thread, until
it is re-enabled.

2. Wait until all instructions for that thread have
cleared the pipeline.

3. After setting the source thread select field in the
CSR to the target thread number, copy its PC and
CSR values to control memory, where they can be
accessed later.

4. After setting the destination thread select field in the
CSR to the target thread number, write the desired
ISR address and appropriate CSR value to its PC
and CSR.

5. Re-enable the thread by setting its bit in the
Multithreading Enable (MT_EN) register.

6. Use the SETCSR instruction to recover the control
thread's own destination context.

3.9 Crystal Oscillator
Figure 3-3 shows the connections for attaching a crystal
to the OSC oscillator. The crystal is connected across the
OSC_IN and OSC_OUT pins. There is about 4pf of
capacitance on each of OSC_IN and OSC_OUT pins to
VSS. A parallel resonant crystal is recommended that has
a maximum ESR of 60 ohms at 12 MHz. A feedback
resistor (Rf) of 2 megohms must be connected between
OSC_IN and OSC_OUT for reliable crystal startup.

The crystal manufacturer’s load capacitance rating (CL)
should be equal to (C1 x C2) / (C1 + C2), where C1 =
capacitance on OSC_IN (4pF + stray board capacitance
+ added capacitance), and C2 = capacitance on
OSC_OUT (4pF + stray board capacitance + added
capacitance). It is recommended that C1 = C2 = 22pF.
The trace length between the OSC pins and the crystal
should be as short as possible, to avoid noise coupling.

External clocks into OSC_IN are not supported.

Figure 3-3 Crystal Connection

3.10 Clock Circuitry
The clock block supports six independent clock sources
for control and operation of the IP51xx. The clock sources
are the core clock, the I/O clock, the 200 MHz fixed clock,
the DDR SDRAM clock, the real-time clock and the
internal R-C clock. The core clock supplies timing for the
main processor as well as the subsystems accessed by
the main processor such as the system timers and the I/O
blocks. The I/O clock provides a clock for the GMAC and
Port E Serdes subsystems. It is a 250-MHz fixed
frequency clock. The 200-MHz fixed frequency clock
provides a clock for the PCI subsystem. The real-time
clock provides a precise continuous timing reference,
independent of any system configuration (such as low
power mode). The R-C clock provides an imprecise
continuous timing reference used for tasks such as
system reset and initialization. No phase relationship is
guaranteed between any of the clocks, even if derived
from the same reference.

Figure 3-4 shows the logic for producing core, I/O, and
DDR clocks. The clock registers location and layout are
specified in Table 7-5.

An external crystal must be connected between OSC_IN
and OSC_OUT, as discussed in Section 3.9. External
clocks into OSC_IN are not supported.

C1 (22pF) C2 (22pF)

12 MHz

RfOSC_IN OSC_OUT
(2 megohms)

IP51xx

Crystal
www.ubicom.com 23

IP51xx Data Sheet – March 28, 2007

Figure 3-4 Clock Circuitry Diagram

* The capability exists to program to any integer value in this range, but, for reliable operation, a value
must be used which results in the output frequencies shown in this figure. Bit field values of N cause
divide or multiply by N+1. For example, if OCP_CLK_CORE_CFG has bits 28:23 = 000000, then the
Reference Clock Divider will divide by 1.

** Bits 28 through 5 must not be changed while bit 4 = 1 (this will cause clock glitches).

*** To reduce the core clock to the minimum possible frequency (OSC_IN frequency divided by 16), clear
bit 4, set bits 6 and 3:0 (and set bits 5 and 7 if the lowest power is desired), then set bit 4.

**** Only the 350 MHz version is rated for 350 MHz. The 270 MHz version is rated for a max of 270 MHz.

Core PLL
Multiplier,
x 12-500*

PLL Output
Divider,
÷ 1–8*

Ref. Clock
Divider,
÷ 1-12*

Forward
Clock

Divider
÷ 1–16

OSC12 MHz

OCP_CLK_CORE_CFG Register Bits @ 0x01000000

1

0 1

0
12 MHz

1-12
MHz

136-500
MHz

17-500
MHz

12-500
MHz 0.75-

270 MHz

0.75-
270 MHz

power
down reset

28:23** 5** 22:11** 7** 10:8** 6**

4**
3:0***

OSC_IN

OSC_OUT
multiplier

or
0.75-

350 MHz

or
0.75-

350 MHz

To Core

divider divider

Add 1 to value of register to get actual divider/multiplier

Crystal Driver

I/O PLL
Multiplier,
x 12-500*

PLL Output
Divider,
÷ 1–8*

Ref. Clock
Divider,
÷ 1-12*

OCP_CLK_IO_CFG Register Bits @ 0x01000004

1

0 1

0
12 MHz

1-12
MHz

136-500
MHz

17-500
MHz

12-500
MHz

power
down reset

28:23** 5** 22:11** 7** 10:8** 6**

4**

multiplierdivider divider

Add 1 to value of register to get actual divider/multiplier

12-500 MHz
÷2

÷2.5

Port D

Port F

Ports B/C

DDR

OCP_CLK_DDRDS_CFG Register Bits @ 0x0100000C

1

0 1

0
12 MHz

120-200
MHz

120-200
MHz

120-200
MHz

power
down reset

5** 7** 6**

4**

120-200 MHz

DDR PLL
Multiplier,
x 12-500*

PLL Output
Divider,
÷ 1–8*

Ref. Clock
Divider,
÷ 1-12*

OCP_CLK_DDR_CFG Register Bits @ 0x01000008

1

0 1

0
12 MHz

1-12
MHz

136-500
MHz

120-200
MHz

120-200
MHz

power
down reset

28:23** 5** 22:11** 7** 10:8** 6**

4**

multiplierdivider divider

Add 1 to value of register to get actual divider/multiplier

120-200 MHz

USB
PHY
PLL

Serdes
240 MHz

Port E
Serdes

250 MHz

÷2

High
Speed
USB

480 MHz

Deskew
PLL

DDR_CLKFB
DDR_CLKFBN

DDR_CLK
DDR_CLKN

(typically
500 MHz)

GMAC
250 MHz

PCI
200 MHz
24 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
3.11 Reset
The following sources are capable of causing a chip reset:

• Power-on
• External reset (RSTN pin)
• Watchdog module
• Debug port
• Processor trap
• Software initiated reset

When a reset occurs, the reasons for the reset are
reflected in the Reset Reason register. For details see
Table 7-5.
www.ubicom.com 25

IP51xx Data Sheet – March 28, 2007
4.0 Instruction Set

4.1 Operand Addressing
The IP51xx has data types of three principle sizes: 8-bit
byte, 16-bit short word and 32-bit long word, as shown in
Figure 4-1. There is also a 48-bit data type, used only for
accumulator results in the ACC0 or ACC1 register. The
byte ordering for operands in memory is big-endian,
although bit numbering within registers is little-endian (as
shown in Figure 4-1). Big-endian format means that the
address of the operand refers to the byte address of the
most-significant byte, and bytes are in memory in the
order of most to least significant. For example, storing the
16-bit operand 0x1234 at address 0x1000 means that
0x12 is stored at address 0x1000 and 0x34 is stored at
address 0x1001.

Both the program and data spaces are byte addressed,
and operand addresses must be naturally aligned – that
is, they must be integer multiples of the operand size. A
misaligned operand address causes a trap. If the
misaligned address is a target, the target may or may not
be modified, and additional bytes near the target may be
modified. When a reference is made to a misaligned data
space operand, as a source or target, a TRAP bit is set.
The TRAP_CAUSE register for the affected thread
captures the reason for the trap event, and the PC register
for that thread points to the instruction that caused the trap
event.

Figure 4-1 Big-Endian Data Formats of IP51xx.

4.2 Addressing Modes
Most of the IP51xx instruction formats (as shown in Table
4-2) use a small number of common fields, which are
aligned for ease of decoding. The most important of these
are the 11-bit source-1 and 11-bit destination operand
specifiers, and the 5-bit source-2 field. The latter may
contain either a 5-bit unsigned immediate value, or a data
register number (in the right-most 4 bits), depending on
the specific instruction. A five-bit immediate value is
normally a bit number or a shift count, again depending on
the specific instruction. DSP instructions allow a data
register, an accumulator, or a 5-bit immediate in this field.

The 11-bit source-1 and the 11-bit destination fields are
defined the same. This 11-bit field is used to select one of
the following addressing modes (refer to Table 4-1 for
more detail):

• Direct Addressing of the register address space
• Register Indirect with 7-bit unsigned offset
• Register Indirect with pre or post increment or

decrement
• Register Indirect with indexing
• Immediate: 8-bit value, sign extended to size of

operand type

An immediate value in the destination specifier is unusual,
but it can be used to prevent write back of the instruction
result value to any real destination. The instruction is then
executed ‘for side effects only’ – i.e., setting the condition
codes.

To encode all of the above in only 11-bits, variable length
encoding is used. The minimum length encoding of a 1-bit
is used for the register indirect with offset mode, allowing
the maximum number of bits for offset. This results in the
following two formats:

...where:

Details of this encoding scheme are shown in Figure 4-5.

In the Harvard architecture model, addressing modes for
data and program memory space have to be considered

MS BYTE

MS BYTE

MS BYTE

LS BYTE

LS BYTE

LS BYTE

0

2

4

15 8 7 0

MS BYTE

MS BYTE

MS BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

LS BYTE

LS BYTE

LS BYTE

0

4

8

31 24 23 16
LONG WORD ADDRESS

SHORT WORD ADDRESS

IN
C

R
E

AS
IN

G
 A

D
D

R
E

S
S

ES

MS BYTE = MOST SIGNIFICANT
LS BYTE = LEAST SIGNIFICANT

15

15 8 7 0

Register Indirect With
Offset: 1 i i A A A i i i i i

Other Addressing Modes: 0 x x A A A n n n n n

"i" : Indicates immediate value bits;
"A" : Indicates the three address bits that

select one of the 8 address registers;
" x" and "n" : Other fields used by other addressing

modes.
26 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
separately. For data address space, the supported
addressing modes are described above. For program
space, both register indirect and PC relative addressing
modes are supported. Addressing modes for both spaces
are summarized in Table 4-1.

4.2.1 The Register Address Space
Register addressing mode is used to address the general-
purpose registers, D0-D15, as well as the address
registers A0-A7, accumulators ACC0/ACC1, SOURCE3,
and all on-chip control registers. It is the only mode that
can access the core's control registers, because the
address space in which these registers reside is not a
subset of the general memory address space. A register
in the register addressing space cannot be accessed
through a regular memory addressing mode that happens
to resolve to the same numerical value.

The register addressing space is 256 registers in length,
or 1024 bytes. The byte address specified in an
assembler statement is right shifted two bits by the
assembler, to generate the 8-bit register address offset.
Although the assembler syntax requires a byte address,
what is addressed in this mode is not bytes, but a space
of 256 32-bit register locations. The register addressing
space covers access to the following registers:

• All Programmers' Model registers described in
Section 3.1.

• On-chip control and status registers for overall chip
and timer control.

Because the register addressing space is absolute, an
assembler include file of EQU statements can be used to
define symbolic names for all the registers. Then
instructions can access these registers directly using their
symbolic name as a source or destination operand.
www.ubicom.com 27

IP51xx Data Sheet – March 28, 2007
Table 4-1 Addressing Modes
Space Type ASM Syntax Effective Address (EA)

Operand Register $xx or
Register Mnemonic

No EA. Register address is 10 bits:
(8-bit register number) || 00

Indirect (An) EA = An
Indirect with
Offset

offset(An) EA = An + offset;
PDEC only: EA = An - offset (in range 4 to 512);
Assembly Syntax: Offset specified in bytes;
Opcode Coding:
Byte Operand: Offset = 7-bit unsigned immediate value;
16-Bit Operand: Offset = 7-bit unsigned immediate value || 0;
32-Bit Operand: Offset = 7-bit unsigned immediate value || 00;
PDEC Operand: Offset = 11111111111111111111111 || 7 bit imme-
diate || 00

Indirect with
Post-Increment

(An)delta++ Step 1: EA = An ;
Step 2: An ← An + delta
Assembly Syntax: delta specified in bytes;
Opcode Coding:
Byte Operand: delta = 4-bit signed immediate value;
16-Bit Operand: delta = 4-bit signed immediate value || 0;
32-Bit Operand: delta = 4-bit signed immediate value || 00.

Indirect with
Pre-Increment

delta(An)++ Step 1: An ← An + delta
Step 2: EA = An ;
Assembly Syntax: delta specified in bytes;
Opcode Coding:
Byte Operand: delta = 4-bit signed immediate value;
16-Bit Operand: delta = 4-bit signed immediate value || 0;
32-Bit Operand: delta = 4-bit signed immediate value || 00.

Indirect with
Index

(An,Dn) EA = An + (Dn << log2(operand size in bytes))

Immediate #xxxx
#xx

Operand is 16-bit or 8-bit immediate value taken from instruction.
Value is sign-extended to 32-bits before use. For 8 bit immedi-
ate in general source-1, the EA is the 32-bit sign extended imme-
diate.

CALLI
Instruction

Indirect offset(An) PEA = An + (sign-extended coded offset <<2)
Assembly Syntax: Offset is specified in bytes as a signed 18-bit
number. This number is right shifted by two bits for instruction
coding. Coded Offset = Assembly Offset[17:0] >> 2

CALL
Instruction

Relative offset(PC) PEA = PC + (coded offset<<2)
Assembly Syntax: Offset is specified in bytes as a signed 26-bit
number. This number is right shifted by two bits for instruction
coding. Coded Offset = Assembly Offset[25:0] >> 2

JMPcc
Instruction

Relative offset(PC) PEA = PC + (Opcode Offset)<<2
Assembly Syntax: Offset is specified in bytes as a signed 23-bit
number. This number is right shifted by two bits for instruction
coding. Opcode Offset = Assembly Offset[23:0] >> 2

Notation: EA: Data Effective Address; PEA: Program Space Effective Address
28 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
4.3 Instruction Set Summary
The instruction set has a fixed-length 32-bit instruction
word, and the internal data path is 32 bits wide.

This section discusses the instructions in logical groups,
as follows:

• Arithmetic and Logical Operations
• DSP Operations
• Shift and Bit-Field Operations
• Single Bit Operations
• Data Movement And Extension Operations
• Program Control Operations

Detailed descriptions of the individual instructions are
presented in Section 4.5.

4.3.1 Arithmetic and Logical Operations
Integer arithmetic support consists of the basic operations
of add, subtract, multiply, and multiply-accumulate (MAC).
Logical operations include the four basic operations of
AND, OR, XOR, and NOT. They perform bit-wise Boolean
operations on operands.

The following paragraphs discuss selected instructions in
more detail.

ADDC and SUBC

ADDC and SUBC use the C-bit in the 32-bit condition
code to implement extended precision arithmetic
operations. The C-bit is used for any carry and borrow
between different 32-bit words of an extended operand
(there is no ADDC.2 or SUBC.2). For SUBC, the
complement of the C-bit on input is the “borrow” value for
the operation. The borrow is effectively added to the right-
hand operand (the subtrahend) before it is subtracted
from the left hand operand. (In practice, what that means
is that, whereas normal subtraction is implemented by
adding the logical complement of the right hand operand
to the left hand operand, with a forced '1' as carry in,
SUBC uses the input value of the C-bit as the carry in.)

The Z bits are treated differently for ADDC and SUBC
than for other instructions. If the result is nonzero, the Z
bit is cleared, but if the result is zero, the Z bit is not
changed. When adding multiprecision numbers, first an
ADD instruction will set or clear the Z bit for the least
significant 32 bits. Subsequent ADDC instructions can
only clear the Z bit. After the sequence of ADD and
ADDC, the Z bit will be set if the multiprecision result is
zero.

There is limited scope for inserting instructions between
the instruction that sets the carry flag value and the ADDC
or SUBC instruction intended to use it. MOVE, and other

instructions that don't affect the C flag are safe, but loop
end tests are problematic. A loop end test will normally
affect the flag value. Therefore, it is desirable to use in-line
expansions, rather than loops, for extended precision
arithmetic. Since the normal IP51xx arithmetic operations
are 32 bits wide, it only takes a single ADD, followed by
one ADDC, to perform a 64-bit extended precision add.

In rare cases, where very long extended precision
operations must be implemented, it is possible to use the
LEA instruction to decrement a loop counter register, and
use an EXT instruction to set the Z and N bits of the
condition codes, without affecting the C and V flags. That
permits a conditional branch on non-zero for the loop end
test, at the cost of the extra EXT.

MAC_RC16

The MAC_RC16 register is set by any DSP Instruction
that targets ACC0. It is not modified by any other
instruction that explicitly targets ACC0. The result being
placed in ACC0 is considered to be a number in S16.31
format. This is a two's complement 48-bit fractional
number with 31 bits after the decimal point. To create the
value in the MAC_R16 register, this 48-bit number is first
rounded to have 15 bits after the decimal point. To round,
the value of the 16th bit after the decimal point is added to
the 15th bit after the decimal. After rounding, the result is
clamped to be in the range 0.111111111111111 (binary)
to 1.000000000000000 (binary). The sign of the clamped
value is the same as the sign of the original number,
before rounding, to prevent the highest positive number
from being rounded to the lowest negative number. After
rounding and clamping, the result is sign extended to 32
bits and stored in the MAC_RC16 register. The resulting
format has 17 copies of the sign bit, a decimal point, and
15 fractional bits, in two's complement.

CRCGEN

This is a special purpose instruction for efficient
calculation of CRC values in message protocols, such as
Ethernet, and bit-stream scrambling. It models the
operation of a Linear Feedback Shift Register (LFSR), for
any generating polynomial of order 32 or less. It
processes eight bits of input at a time. It is defined as
follows:
www.ubicom.com 29

IP51xx Data Sheet – March 28, 2007
4.3.2 DSP Operations
Digital Signal Processing (DSP) operations perform
multiply, multiply-accumulate, add, and subtract, with
results going to one of the two accumulators. The
accumulators are 48 bits each, split between two 32-bit
registers (ACC0_HI / ACC0_LO, ACC1_HI / ACC1_LO).
ACC0 can also be referred to using the names MAC_HI /
MAC_LO. The 16 most significant bits of the HI
accumulator register are set to zero by each operation.
The result is not sign extended beyond 48 bits. The A bit
in the DSP control field specifies the destination
accumulator (0: ACC0. 1: ACC1).

Source-2 for DSP instructions can be an unsigned
immediate, a Dn register or an accumulator. Instruction
format 10a (in Table 4-2) uses an unsigned 5 bit
immediate for the source-2 operand, and the DSP S and
T bits are ignored.

For instruction format 10b (in Table 4-2), if the DSP
control S-bit is set, the source-2 field in the instruction
specifies an accumulator. (0: ACC0, 1: ACC1). MADD
and MSUB use the entire 48-bit accumulator as the
source. Other instructions use the upper or lower 16-bits
of the ACC_LO part of the accumulator, depending on the
T bit. If the S-bit is clear, the source-2 field specifies a Dn
register.

For instruction format 10b, the DSP control T bit, when
set, specifies that a 16-bit source-2 input should be taken
from the 16 most significant bits of the source-2 register
(Dn or ACC_LO).

The DSP control C bit, when set, causes the result to be
clipped. For MULF.C and MACF.C, there is one possible
multiply overflow condition that causes clipping. The
result of -1.0 * -1.0 is clipped to the largest positive
number 0.9999… For MACS.C, MACF.C, MSUF.C,
MADD.4.C, and MSUB.4.C, the C bit causes the 48-bit
add/subtract result to be clipped to signed 32 bits before
being sign extended to 48 bits and stored in the
accumulator. For MACU.C and MACUS.C, the C bit
causes the 48-bit add result to be clipped to unsigned 32-
bits, before being zero extended to 48 bits and stored in
the accumulator. For MADD.2.C and MSUB.2.C, the C bit
causes the 48-bit add/subtract result to be clipped to
signed 16 bits before being sign extended to 48 bits and
stored in the accumulator. Overflow of the 48-bit
accumulator does not set the O bit in the CSR register.

Whether the C bit is set or not, any operation that would
have caused clipping to change the result, will set the O
bit in the CSR register.

MSUB and MADD do 48-bit arithmetic. Both source
operands are sign extended to 48 bits before the
operation if they are not accumulators.

MACUS supports efficient 32x32 bit multiplies with either
32 or 64 bit results.

If the destination is ACC0, the MAC_RC16 register will get
the rounded and clipped result.

Syntax: CRCGEN s1, s2
Inputs: s1 – next data byte, B (general source, typically from memory)

s2 – generating polynomial, P (Dn register or 5 bit immediate)
ACC0_LO – current CRC value, C

Outputs: ACC0_LO – new CRC value, C'
ACC0_HI – scrambled output byte, S, shifted into the most significant byte
MAC_RC16 - S16.15 image of ACC0_HI, ACC0_LO

Operation:
X = (C ^ B) & 0xFF;
F = X;
for (i=0; i<8; i++) F = (F>>1)^(F&1 ? P : 0);
S = C & 0xFF;
ACC0_LO = F ^ (C >> 8);
ACC0_HI = (ACC0_HI >> 8) | (S << 24);
MAC_RC16 ← S16.15(ACC0_HI, ACC0_LO)
30 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
4.3.3 Shift and Bit-Field Operations
This category of instructions provides the ability to directly
manipulate variable-width fields. Most have two source
and one destination operand. The source operand
encoded in the source-1 field of the instruction format is a
general memory or register operand. The second source
operand is invariably a bit number, a shift count, or, in the
case of the bit field extract instruction, a two-element bit-
field specifier (see below).

All of the instructions in this class, with the exceptions of
bset and bclr, use the restricted 3-operand instruction
formats (formats 4a and 4b in Table 4-2 on page 34).
Those formats restrict the destination operand to be a
data register, but they allow the second source operand to
be specified by either a 5-bit immediate field (format 4a)
or by the contents of a data register (format 4b).

The bset and bclr instructions have their own dedicated
format (format 2 in Table 4-2 on page 34). This format only
allows for a 5-bit immediate specifier for the second
source operand (the bit number), but it allows the
destination operand to be a general memory or register
operand. This allows bset and bclr to be used to update
peripheral control registers, or to manage bit semaphores
in data memory.

The following paragraphs discuss specific shift and bit
field instructions in more detail.

4.3.3.1 Bit Field Extract
For bfextu, the Unsigned Bit Field Extract instruction, a
bit-field is defined by the following parameters in the
source-2 operand:

Bits 4:0: Bit-Field Length;
Bits 12:8: Bit-Field Start.

The source-2 operand can be either a data register, or
5-bit immediate field. If the latter is used, it is zero-
extended to 32 bits, making the bit field start location
automatically zero. The bit field itself resides in the
source-1 operand, which is a general EA operand.

Figure 4-2 Illustration of Bit-Field Extract

4.3.3.2 Bit Merge Instruction
Bits or bit fields from two source operands can also be
merged, under control of a selection mask, and saved in
a destination operand. This is illustrated in Figure 4-3.

The merge instruction takes a general source-1 operand
and a source-2 data register, and merges their bits into a
general destination operand. Selection of bits is controlled
by a mask that must be loaded into the special source-3
operand register prior to the operation. Where there is a 1
in the mask, that bit from source-1 is merged and replaces
the corresponding bit from source-2.

The merge instruction performs the merge operation
atomically, with respect to other threads that may be
running. If the source-1 operand and the destination are
the same memory address, or the same control register in
the register address space, the merge becomes an
atomic read-modify-write operation — again with respect
to other threads. However, if the destination is a
peripheral register, the operation is not atomic, with
respect to the peripheral hardware. The latter will see first
a read, followed a short time later by a write.

Figure 4-3 Merge Operation

Width Start

Source

Destination

Bit Field

SOURCE3

Source 2

Mask 1s

Source 1 Bit Field

Destination Bit Field

Bit Field Bit Field
www.ubicom.com 31

IP51xx Data Sheet – March 28, 2007
4.3.3.3 Shift and Merge Instructions
Since the IP3000 requires memory operands to be
aligned in accordance with the operand size, there is an
issue of how to access unaligned data fields within byte
streams or external data structures. Two shift and merge
instructions, shmrg.1 and shmrg.2, support assembly of
larger operands from byte or short word data streams,
respectively.

The streams are assumed to have big-endian ordering.
shmrg.1 shifts its 32-bit source-2 operand left by 8 bits,
merges the upper 24 bits with the lower 8 bits of its first
operand, and places the results in its destination. The
second source operand may be a data register or a 5-bit
immediate value (zero-extended to 32 bits). The
destination operand must be a data register.

shmrg.2 is similar, but the shift is 16 bits and the lower 16
bits of the first operand are merged.

4.3.3.4 Shift Double Instruction
Sometimes a bit field will span word boundaries. The Shift
Double instruction, shftd, facilitates access to such fields.
It uses a 64-bit funnel shifter to right shift two 32-bit source
operands that are concatenated together. The shift count
comes from the source-2 operand and one of the shifter
inputs from the SOURCE3 register. The operation is
illustrated in Figure 4-4.

Figure 4-4 Shift Double (shftd) Instruction

4.3.3.5 Other Shift Instructions
The remaining instructions in this category are
conventional arithmetic and logical shift operations. In all
shift instructions, variant forms are supported for either
static or dynamic shift counts.

4.3.4 Single Bit Operations
The single bit instructions handle test, set, and clear of a
single bit of a 32-bit operand. For bset and bclr, both Z
condition bits are set according to the state of the
specified bit before the set or clear operation. This is
different than for all other instructions, which set the
condition codes according to the result of their operation.
There are for two reasons for the difference:

First, for control of conditional branching, it does not make
sense to set the Z bit, when the user knows whether the
result will be set or cleared.

Second, and more importantly, setting the Z bit before the
operation allows the user to use bset as an atomic test
and set semaphore instruction.

The bset instruction can be used to implement binary
semaphores directly. Other types of semaphores can then
be implemented in software, using the binary semaphore
around them for mutual exclusion.

Examples:

bset (A0), (A0), #8
jmpeq resource_available

Shift Count

Bit FieldBit Field

Bit FieldBit Field

SOURCE3 Register Source 1

Destination
32 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
4.3.5 Data Movement And Extension
Operations

This group of instructions performs simple address and
data transfers. They are used to move bytes, words and
long words from a source address to a destination
address.

There are two forms of immediate moves: movei (move
immediate) and moveai (move address immediate). The
latter moves a 24-bit immediate value, left-shifted by 7

bits, into an address register. When that register is used
as a base register in an addressing mode with a 7-bit
offset, it provides immediate addressability to any data
location in two gigabytes of data address space.

A special bypass mechanism in the pipeline enables an
address register that has been loaded via moveai to be
used immediately by the following instruction, without the
4-cycle address register load-to-use delay that applies for
other address register loads.

Example:

move.4 D1,D2
move.1 D1,(A0)
move.4 D9,PORTA_DATA ; Register Addressing mode
move.2 (A1)2++,(A2)2++
move.2 D4,COEF64(A6)
move.4 (SP)4++,A0 ; Saves address register to stack
move.4 A0,D0 ; Moves D0 → A0
move.4 D0,PARAMETER(SP) ; PARAMETER = Pos. mod-4 number
movei D9,#0xffe9 ; D9 = 0xffffffe9

4.3.6 Program Control Operations
In program flow control operations, the PC is always
incremented by four (when not branching) since all
instructions are four bytes long. In terms of the semantic
model of the program, the increment takes place after the
instruction is executed. Hence, in the descriptions below,
“PC” refers to the address of the instruction itself; that is,
a PC-relative branch with an offset value of zero branches
to itself.

Instruction addressing modes are different from data
addressing modes, since they address program space.
This is shown with “pea” or Program Effective Address.

For the register-indirect branches, calli and ret, the two
least-significant bits of the register contents are ignored.

Note that call and calli can be used as ordinary jumps,
simply by ignoring the saved return address. calli can be
used to return if the return address is in an An register. It
is typically used this way in leaf routines since it is faster
than ret on the IP51xx implementation.
www.ubicom.com 33

IP51xx Data Sheet – March 28, 2007
4.4 Instruction Formats and Encoding
Table 4-2 shows the formats of instructions. The format
codes of the first column provide cross-references for the
instruction encodings in Table 4-4.

Table 4-2 Instruction Formats

Format 26 16 15 11 10 0 Class
31 27 26 25 21 20 19 16 15 14 11 10 8 7 5 4 0

1a Opcode
5 Bits

Unused = 0
11 Bits

Opcode
Extension

5 Bits

Unused = 0
11 Bits No Operand

1b Opcode
5 Bits

Unused = 0
11 Bits

Opcode
Extension

5 Bits

Source-1
11 Bits

1-Operand
Source

1c Opcode
5 Bits

Destination
11 Bits

Opcode
Extension

5 Bits

Unused = 0
11 Bits

1-Operand
Destination

1d Opcode
5 Bits

Destination
11 Bits

Opcode
Extension

5 Bits

Source-1
11 Bits 2-Operand

2 Opcode
5 Bits

Destination
11 Bits

Bit Number
5Bits

Source-1
11 Bits BSET, BCLR

3 Opcode
5 Bits

Destination
11 Bits 0

Source-2
Register

4 Bits

Source-1
11 Bits

3-Operand
General

4a Opcode
5 Bits 0

Opcode
Extension

5 Bits
0 Dn

4 Bits

Bit Number,
Count
5 Bits

Source-1
11 Bits

3-Operand
Restricted
Dd=G1.op.imm

4b Opcode
5 Bits 1

Opcode
Extension

5 Bits
0 Dn

4 Bits 0
Source-2
Register

4 Bits

Source-1
11 Bits

3-Operand
Restricted
Dd=G1.op.D2

5 Opcode
5 Bits

Immediate
16 Bits

Source-1
11 Bits CMPI

6 Opcode
5 Bits

Destination
11 Bits

Immediate
16 Bits

Move
Immediate

7 Opcode
5 Bits

Condi-
tion

4 Bits
P C

Signed PC-Relative Offset
O[20:0]
21 Bits

Conditional Branch
P: Prediction Bit
C: 16/32 CC select

8 Opcode
5 Bits

O[23:2
1]

3 Bits

An
3 Bits

Signed PC-Relative Offset
O[20:0]
21 Bits

CALL, MOVEAI
O: Offset Field

9 Opcode
5 Bits

O[15:1
3]

3 Bits

An
3 Bits

Offset
O[12:8]
5 Bits

Opcode
Extension

5 Bits

O[7:5]
3 Bits

Am
3 Bits

O[4:0]
5 Bits

CALLI
O: Offset Field

10a Opcode
5 Bits 0

Opcode
Extension

5 Bits

DSP
Control
5 Bits

Immediate
5 Bits

Source-1
11 Bits

DSP
Imm src2

10b Opcode
5 Bits 1

Opcode
Extension

5 Bits

DSP
Control
5 Bits

0
Source-2
Register

4 Bits

Source-1
11 Bits

DSP
Reg src2
34 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 4-3 defines the DSP Control bits.

When Source 2 is an immediate value (Format 10a), the
S and T bits are ignored.

For a more detailed discussion of these DSP control bits,
see Section 4.3.2.

Figure 4-5 shows the 11-bit encodings used in the 11 bit
source1 and source2 instruction fields for the various
addressing modes.

Figure 4-5 Coding of Addressing Modes.

Table 4-4 specifies instruction formats and opcode
assignments for all the instructions described in the
preceding sections. Entries in the table are grouped by

format, not by functionality. Refer back to Table 4-2 for
instruction formats. Opcode and opcode extension values
are given in hexadecimal.

Undefined instruction encodings include unassigned
opcodes and subops, and instruction bits set to 1 that are
defined to be zero. The result of executing an undefined
instruction is undefined.

Table 4-3 DSP Control Bit Definitions
Bit # Symbol Definition
20 C When set, causes the result to be

clipped.
19 T When set, specifies that a 16-bit

Source-2 input should be taken from
the 16 most significant bits of the
Source-2 register (Dn or ACC_LO).

18 S Source 2 Select
1: Accumulator:

(s2=0:ACC0, s2=1:ACC1)
0: A Dn register

17 Reserved: Set to zero.
16 A Destination accumulator:

1: ACC1
0: ACC0

1 I6 I5 I4 I3 I2 I1 I0
0 1 1 A2 A1 A0 0 R3 R2 R1 R0
0 1 0 m I3 I2 I1 I0
0 0 1 8-BIT DIRECT ADDRESS
0 0 0 8-BIT SIGNED IMMEDIATE

I[6:0] – 7-bit unsigned immediate value that is left
shifted by 0, 1, or 2 depending on operand size.
I[3:0] – 4-bit signed immediate value that is left shifted
by 0, 1, or 2 depending on operand size.
M (Mode) – Selects post- (0), or pre- (1) addition of
increment mode.
A[2:0] – 3-bit Address Register Selection.
R[3:0] – 4-bit Data Register Selection.
Direct Address – 8-bit Direct Address specifier, left
shifted two bits to generate the byte address of a 32-bit
register in the direct address space.
Signed Immediate – 8-bit immediate value that is sign-
extended to 32 bits for use as an immediate operand.
www.ubicom.com 35

IP51xx Data Sheet – March 28, 2007
Table 4-4 CPU Instruction Encodings

Type Mnemonic
Opcodes16

Notes
Primary Extension

Format 1: 2-operand
No-Operand Program Control <reserved> 00 00

SUSPEND 01
One-Operand Source RET 04

BKPT 07
Two-Operand
Data Movement and Unary Operations

NOT.4 0A
NOT.2 0B
MOVE.4 0C
MOVE.2 0D
MOVEA 0E
MOVE.1 0F
SETCSR 12 5
EXT.2 15
EXT.1 17
LEA.4 1C
LEA.2 1D
LEA.1 1F
PDEC 1E
<reserved> 01 -

Format 2: BSET, BCLR
BSET 04 -
BCLR 05 -
<reserved> 06, 07 -

Format 3: 3-Operand, General
AND.2 08 -
AND.4 09 -
OR.2 0A -
OR.4 0B -
XOR.2 0C -
XOR.4 0D -
ADD.2 0E -
ADD.4 0F -
ADDC 10 -
SUB.2 11 -
SUB.4 12 -
SUBC 13 -
<reserved> 14-17 -
36 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Format 4: 3-Operand, Restricted
BTST 02 06 3
CRCGEN 08 2
LSL.4 10
LSL.2 11
LSR.4 12
LSR.2 13
ASR.4 14
ASR.2 15
BFEXTU 16
BFRVRS 18
SHFTD 1A
MERGE 1C
SHMRG.2 1E
SHMRG.1 1F
<reserved> 03 -

Format 5: Compare Immediate
CMPI 18 - 3

Format 6: Move Immediate
MOVEI 19 - 4

Format 7: Conditional Branch
JMP<cc> 1A -

Format 8: CALL, MOVEAI
CALL 1B -
MOVEAI 1C -
<reserved> 1D -

Format 9: Call Indirect
CALLI 1E -
<reserved> 1F -

Table 4-4 CPU Instruction Encodings (continued)

Type Mnemonic
Opcodes16

Notes
Primary Extension
www.ubicom.com 37

IP51xx Data Sheet – March 28, 2007
Format 10: DSP
Src-2 can be Dn or ACC0 or ACC1.

Destination can be ACC0 or ACC1.

.C: clip result.

.T: use top 16 bits of src-2.

Multiplies are 16-bit.

Add/sub are 48-bit.

MULS 06 00
MACS 01
MULU 02
MACU 03
MULF 04
MACF 05
<reserved> 06
MACUS 07
<reserved> 08
MSUF 09
<reserved> 0A-0F
MADD.4 10
MADD.2 11
MSUB.4 12
MSUB.2 13
<reserved> 14-1F

Notes:
1. Destination is implicit ACC0_HI, ACC0_LO, MAC_RC16 registers.

Destination field in instruction is coded as zero.
2. Destination is implicit CSR register (CCs).
3. If destination is data memory address, operand size is 16 bits.
4. Destination is coded with the direct register address of the CSR register.

Table 4-4 CPU Instruction Encodings (continued)

Type Mnemonic
Opcodes16

Notes
Primary Extension
38 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
4.5 Detailed Instruction Reference
This section provides detailed information about each
instruction. These instructions are presented in
alphabetical order.

Table 4-5 shows the functional groups and lists the
instructions included in each group. For descriptions
applying to these instruction groups, see Section 4.3.

The following points apply to all instructions, in the
instruction description tables that follow:

• The “.size” field in instruction syntax refers to the data
memory width of operands, and not the instruction
width or the ALU result width; both the latter are
always 32-bits.

• With arithmetic, logical, and shift operations, if the
source is 16-bits, it is always sign extended to 32-bits
before the operation to match the width of the internal
data path. Only MOVE.1 and MOVE.2 zero-extend a
smaller source operand, when the destination is a 32-
bit register (i.e., any register in the register address
space – most frequently a data register). The 16-bit
condition codes allow operation with 16-bit unsigned
integers in memory.

• All arithmetic and logical operations are performed in
32-bit resolution. If the destination is in memory and
the instruction's operand size is only 16 bits, it is the
lower 16 bits of the 32-bit result that is written to
memory.

• The source-2 operand, for instructions with more than
one input operand, is always either a 32-bit data
register, or (in the case of shift and bit field
instructions) a 5-bit zero-extended immediate value.

• Data registers, address registers, and other registers
in the register address space, used as source or
destination operands, are always 32-bits wide.

• An immediate 8-bit value in the source-1 operand
specifier is always sign-extended to 32-bits before
use.

• The detailed instruction descriptions indicate which
condition flags are set by each instruction. In general,
any instruction which computes a 32-bit result will set
both the N and Z flag bits. Only instructions that can
generate a carry or overflow will set the C or V bits.
BTST, BSET, and BCLR set only the Z bit. MOVE
instructions do not affect the flags.

• The indicated condition flag bits are always set
independently in both the 16- and 32-bit condition
codes. Thus, if a 32-bit result were all 0's in the lower
16 bits, but had some non-zero bits in the upper 16
bits, the 16-bit condition result would be 1 in the Z bit
and 0 in the N bit. The 32-bit result would be 0 in the
Z bit and a copy of bit 31 in the N bit.

Example: As the following two instructions demonstrate,
the size refers to data memory access size. The
arithmetic and logical operations are always performed at
32-bit resolution.

; op dest, s1, s2
ADD.2 (A1),(A0),D2 ; Read 16-Bits →

; Add 32-bits → Store 16-bits
ADD.2 D1,(A0),D2 ; Read 16-Bits →

; Add 32-bits → Store 32-bits

Table 4-5 Instructions Included in Each Functional Group
Functional Group Instructions Included

Arithmetic and Logical Instructions ADD.2, ADD.4, ADDC, AND.2, AND.4, CMPI, CRCGEN, LEA.1,
LEA.2, LEA.4, PDEC, NOT.2, NOT.4, OR.2, OR.4, SUB.2, SUB.4,
SUBC, XOR.2, XOR.4

DSP Instructions MULS[.T], MACS[.C][.T], MULU[.T], MACU[.C][.T], MULF[.C][.T],
MACF[.C][.T], MACUS[.C][.T], MSUF[.C][.T], MADD.2[.C][.T],
MADD.4[.C], MSUB.2[.C][.T], MSUB.4[.C]

Shift and Bit-Field Instructions ASR.2, ASR.4, BFEXTU, BFRVRS, LSL.2, LSL.4, LSR.2, LSR.4,
MERGE, SHFTD, SHMRG.1, SHMRG.2

Single Bit Instructions BTST, BSET, BCLR
Data Movement and Extension Instructions MOVEI, MOVEAI, EXT.1, EXT.2, SETCSR, MOVE.1, MOVE.2,

MOVE.4, MOVEA,
Program Control Instructions JMP<cc>.C.T/F, CALL, CALLI, RET, SUSPEND, BKPT
www.ubicom.com 39

IP51xx Data Sheet – March 28, 2007
Table 4-6 lists the abbreviations and symbols used in the detailed instruction descriptions.

Table 4-6 Abbreviations and Symbols Used in the Detailed Instruction Descriptions
Symbol Descriptions

C Carry condition code bit (CSR register bit 0 for 16 bits or bit 4 for 32 bits). The C bit is set to the value of
the carry out for arithmetic operations where a carry out is a meaningful possibility (add, subtract, and
compare). For subtract and compare operations, the C bit contains the complement of the borrow. For
other operations, the bit remains unchanged from its value before the operations.

N Negative condition code bit (CSR register bit 3 for 16 bits or bit 7 for 32 bits). Set if result is negative,
cleared otherwise.

V Overflow condition code bit (CSR register bit 1 for 16 bits or bit 5 for 32 bits). For arithmetic operations
where overflow is a meaningful possibility, the V bit is set if overflow occurs and cleared if it does not. For
other operations, the bit remains unchanged from its value before the operations.

Z Zero condition code bit (CSR register bit 2 for 16 bits or bit 6 for 32 bits). Set if result is zero, cleared
otherwise. For addc and subc the Z bit is cleared if the result is nonzero, and left unchanged if the result
is zero. This bit does not include any testing of carry bit.

O DSP Overflow Status (sticky) condition code bit (CSR register bit 20). DSP instructions set this bit if the
result is not exact, but never clear it. When a DSP instruction sets this bit, the change is visible several
clocks after the DSP instruction.

SE48 Sign extension to 48 bits.
SE32 Sign extension to 32 bits.
ZE48 Zero extension to 48 bits.

S16.15 A 16-bit fractional value (S.15 format) that is sign-extended to 32 bits (S16.15 format).
Xn n repetitions of bit X.
|| Concatenation of bits.
| Logical OR.
& Logical AND.
! Logical negation.

>>N Right shift by N bits.
<<N Left shift by N bits.

d General-purpose, 11-bit destination operand used to select a register, memory location, or an immediate
value.

s1 General-purpose, 11-bit source operand used to select a register, memory location, or an immediate
value.

s2 Restricted 4- or 5-bit source operand used to select a data register or an immediate value.
[.T] (top) In DSP instructions, indicates that the s2 input is from the 16 most significant bits of the s2 register.
[.C] (clip) In DSP instructions, indicates that the result will be clipped before being stored in the target accumulator.
Dn, Dm One of 16 data registers.
An, Am One of 8 address registers.
#<val> Immediate value.

Rn Any register.
40 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
16/32-Bit Addadd.2 d, s1, Dn
add.4 d, s1, Dn

Operand size (bytes):2, 4

Flags affected: C, Z, N, V

Description: d ← s1 + Dn

For Add.2, the 16-bit value in s1 is added to the 16-bit value in Dn. The 16-bit result is stored in d.

For Add.4, the 32-bit value in s1 is added to the 32-bit value in Dn. The 32-bit result that is stored in d.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

add.2 0 1 1 1 0 d 0 Dn s1

add.4 0 1 1 1 1 d 0 Dn s1
www.ubicom.com 41

IP51xx Data Sheet – March 28, 2007
32-Bit Add with Carryaddc d, s1, Dn

Operand size (bytes):4
Flag affected: C, Z, N, V

Description: d ← s1 + Dn + C(32-bit C flag)

The 32-bit value in s1 is added to the 32-bit value in Dn. The 32-bit result is stored in d. If a carry occurs,
it is stored in C (bit 4 of the CSR register).

addc uses C to implement extended-precision arithmetic operations. The C flag is used for any carry
and borrow between 32-bit words of an extended operand.

The Z flag is treated differently for addc than for other instructions. If the result is nonzero, Z is cleared.
If the result is zero, Z is not changed. When adding multiprecision numbers, an add instruction will set
or clear Z for the least-significant 32 bits. Subsequent addc instructions can only clear Z. After the
sequence of add and addc instructions, Z will be set if the multiprecision result is zero.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

1 0 0 0 0 d 0 Dn s1
42 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Logical ANDand.2 d, s1, Dn
and.4 d, s1, Dn

Operand size: 2, 4

Flags affected: N, Z

Description: d ← s1 AND Dn

The contents of s1 are combined with the contents of Dn in a bitwise logical AND operation. The result
is placed in d.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

and.2 0 1 0 0 0 d 0 Dn s1

and.4 0 1 0 0 1 d 0 Dn s1
www.ubicom.com 43

IP51xx Data Sheet – March 28, 2007
Arithmetic Shift Rightasr.4 Dm, s1, #cnt
asr.2 Dm, s1, #cnt
asr.4 Dm, s1, Dn
asr.2 Dm, s1, Dn

Operand size (bytes):2, 4

Flags affected: N, Z

Description: shct ← Dn, or shct ← #cnt
Dm ← s1[31]shct || s1[31:shct]

The contents of s1 are shifted right arithmetically. The number of bits to shift is specified by Dn or #cnt.
If s1 is a 16-bit operand, it is sign-extended to 32 bits before the operation.

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

asr.4 0 0 0 1 0 0 1 0 1 0 0 0 Dm #cnt s1

asr.2 0 0 0 1 0 0 1 0 1 0 1 0 Dm #cnt s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

asr.4 0 0 0 1 0 1 1 0 1 0 0 0 Dm 0 Dn s1

asr.2 0 0 0 1 0 1 1 0 1 0 1 0 Dm 0 Dn s1
44 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Bit Clearbclr d, s1, #bit_num

Operand size (bytes):4
Flag affected: Z

Description: Step 1: Test the bit in s1 indicated by #bit_num and set Z accordingly
(Z ← !bit).
Step 2: Clear the selected bit in d.

Note: Source and destination operands are typically the same, but this is not
required.

31 27 26 16 15 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

0 0 1 0 1 d #bit_num s1
www.ubicom.com 45

IP51xx Data Sheet – March 28, 2007
Bit Field Extract Unsignedbfextu Dm, s1, #cnt
bfextu Dm, s1, Dn

Operand size (bytes):4
Flag affected: N, Z

Description:
Extracts a bit-field from the 32-bit s1 operand and places it in the least-significant bits of Dm. Dn or #cnt
contains the parameters:

Bits 4:0: bit-field width;

Bits 12:8: bit-field start position (low-order bit);
(for the #cnt format, this field is always five zeros)

The result is zero-extended to 32 bits. If Length equals zero, then result equals zero.
If start + width ≥ 32, bit positions ≥ 32 are filled with zeros. See Figure 4-6.

This instruction is a combination of an lsl by “bit-field start”, followed an and.4 with
“bit-field width” bits.

Figure 4-6 Bit-Field Extract

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 0 1 0 1 1 0 0 Dm #cnt s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 1 1 0 1 1 0 0 Dm 0 Dn s1

Width Start

Source

Destination

Bit Field
46 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Breakpointbkpt s1

Operand size (bytes):n/a

Flags affected: none

Description: PC ← Address of bkpt instruction
MT_DBG_ACTIVE[thread] ← 0
For each thread T specified by s1,

MT_DBG_ACTIVE[T] ← 0
MT_BREAK[thread] ← 1

The s1 is a bit mask that indicates which additional contexts to suspend (by clearing their
MT_DBG_ACTIVE bits). The number of a bit set in the mask is the thread number that is to be
suspended. The thread that executes the bkpt instruction is always suspended.

31 27 26 16 15 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 s1
www.ubicom.com 47

IP51xx Data Sheet – March 28, 2007
Bit Setbset d, s1, #bit_num

Operand size (bytes):4
Flags affected: Z

Description: Step 1: Test the bit in s1 indicated by #bit_num and set Z accordingly
(Z ← !bit).
Step 2: Set the selected bit in d.

Note: Source and destination operands are typically the same, but this is not
required.

31 27 26 16 15 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

0 0 1 0 0 d #bit_num s1
48 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Bit Testbtst s1, #bit_num
btst s1, Dn

Operand size (bytes):4
Flags affected: Z

Description: Z ← !s1[bit]

The btst instruction tests a specified bit of the 32-bit s1 operand and sets the Z accordingly. The bit is
specified by the contents of Dn or #bit_num.

Note: The btst instruction has no destination operand; it is used only for its effect on Z in CSR.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-2 SOURCE-1

0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 #bit_num s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-2 SOURCE-1

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 Dn s1
www.ubicom.com 49

IP51xx Data Sheet – March 28, 2007
PC-Relative Call to a Subroutinecall An, offset

Operand size (bytes):n/a

Flags affected: none

Description: Step 1: An ← PC+4
Step 2: PC ← PC + signed offset

offset is two's complement, 26 bits (byte address) in assembly syntax. Only the most-significant 24 bits
(word address) are stored for the instruction. The processor shifts this 24-bit offset value left by two bits
before using it. The return address is saved in the An register selected.

Example:
CALL A0, CalcSpeed ; Jump PC-Relative to Subroutine and
 ; save return address in A0.

31 27 26 24 23 21 20 0

OPCODE O[23:21] ADDRESS
REGISTER SIGNED PC-RELATIVE OFFSET O[20:0]

1 1 0 1 1 offset An offset
50 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Address Indirect Call to a Subroutinecalli An, offset(Am)

Operand size (bytes):n/a

Flags affected: none

Description: Step 1: Target ← Am + signed 18-bit offset
Step 2: An ← PC + 4
Step 3: PC ← Target

offset is two's complement, 18 bits (byte address) in assembly syntax. Only the most-significant 16 bits
(word address) are stored for the instruction. The processor shifts this 16-bit offset value left by two bits
before adding it to the contents of Am. The return address is saved into An.

Example:
CALLI A5, CheckParms(A6) ; Jump indirectly to Subroutine and
 ; save return address in A5.

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0

OPCODE O[15:13] ADDRESS
REGISTER OFFSET[12:8] OPCODE

EXTENSION O[7:5] ADDRESS
REGISTER OFFSET[4:0]

1 1 1 1 0 offset An offset 0 0 0 0 0 offset Am offset
www.ubicom.com 51

IP51xx Data Sheet – March 28, 2007
Compare with Immediate Valuecmpi s1, #imm-16

Operand size (bytes):2
Flags affected: C, Z, N, V

Description: s1 – (sign-extended #imm-16)

The C, Z, N, and V flags are set according to the results of the operation.

Note: There is no destination operand; this instruction is used only for its effect on the condition codes
in CSR.

31 27 26 11 10 0

OPCODE SOURCE-2 SOURCE-1

1 1 0 0 0 #imm-16 s1
52 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
32-bit Incremental CRC Generationcrcgen s1, #poly
crcgen s1, Dn

Operand size (bytes):1
Flags affected: none

Description: ACC0_LO holds current CRC
s1 specifies the next input byte
Dn or #poly specifies the generating polynomial
ACC0_LO ← CRC(ACC0_LO, s1, s2)
ACC0_HI[23:0]← ACC0_HI[31:8]
ACC0_HI[31:24]← scrambled output byte
MAC_RC16 ← S16.15(ACC0_HI, ACC0_LO)

This is a special-purpose instruction for efficient calculation of CRC values in message protocols, such
as Ethernet, and bit-stream scrambling. It models the operation of a Linear Feedback Shift Register
(LFSR) for any generating polynomial of order 32 or less. It processes eight bits of input at a time.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-2 SOURCE-1

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #poly s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-2 SOURCE-1

0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 Dn s1
www.ubicom.com 53

IP51xx Data Sheet – March 28, 2007
Sign-Extend Byte to 32 Bitsext.1 d, s1

Operand size (bytes):1
Flags affected: N, Z

Description: d ← (s1[7])24 || s1[7:0]

Sign-extend byte from source to 32-bits and store result to destination.

The sign extension is effective only if the destination is a register. If it is a memory destination, the
destination size, being the same as the source size, makes the operation equivalent to move.1. If the
source is a direct register, 8 bits is extracted from that register and sign-extended.

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 d 1 0 1 1 1 s1
54 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Sign-Extend 16 Bits to 32 Bitsext.2 d, s1

Operand size (bytes):2
Flags affected: N, Z

Description: d ← (s1[15])16 || s1[15:0]

Sign-extend 16-bit s1 to 32-bits and store result in d.

The sign extension is effective only if the destination is a register. If it is a memory destination, the
destination size, being the same as the source size, makes the operation equivalent to move.2. If the
source is a direct register, 16 bits is extracted from that register and sign-extended.

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 d 1 0 1 0 1 s1
www.ubicom.com 55

IP51xx Data Sheet – March 28, 2007
PC-Relative Conditional Jumpjmp<cc>.C.P offset

Operand size (bytes):n/a

Flags affected: none

Description: If specified condition function evaluates to TRUE,
then: PC ← PC + signed 23-bit offset
else: PC ← PC + 4
cc: refer to Table 4-7 for definition of the condition codes
C: Condition code set select:

C = 0: Select 16-bit Condition Codes (S).
C = 1: Select 32-bit Condition Codes (W).

P: Branch prediction:
P = 0: Continue (F).
P = 1: Take branch (T).

offset is two's complement 23 bits (byte address) in assembly syntax. Only the most-significant 21 bits
(word address) are stored. The processor shifts this 21-bit offset value left by two bits before using it.

There are two sets of condition codes: 16-bit condition codes and 32-bit condition codes. It is up to the
programmer to choose the right set for conditional jump instructions, through the use of the size suffix
appended to the jump instruction. .S indicates use of the “short,” or 16-bit conditions codes, while .W
indicates use of the “word,” or 32-bit condition codes. If no size suffix is used, the assembler uses a
default of .W.

The IP51xx has static branch prediction, indicated by instruction suffixes .T and .F. The T indicates true
or “predict taken,” and F indicates false or “predict not taken.”

There is no branch delay slot; the instruction after the branch is not automatically executed. The branch
prediction indicator controls whether the next instruction fetched after the branch is on the “taken” or
“not taken”' path1. If the branch prediction is subsequently found to be wrong, the fetched instruction is
annulled, and an instruction fetch for the correct path is issued.

31 27 26 23 22 21 20 0

OPCODE CONDITION
CODE P C SIGNED PC-RELATIVE OFFSET

1 1 0 1 0 CC P C offset

1. In some cases, a fetch for the instruction on the "not taken" path may already have been issued, by default, before the
branch instruction is recognized. If the prediction is for "taken," that fetch will be annulled, and a new fetch for the "taken"
path will be issued. That fetch, in turn, could be annulled, if the branch, contrary to the prediction, resolves to "not taken."
Also note that if the actual branch resolution is available before the next instruction fetch for the thread is issued, the actual
resolution overrides any prediction.
56 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Examples:
JMPNE.S.T LOOP_BEGIN ; Jump Not-Equal using 16-bit CCs
 ; assuming branch is likely to occur.
JMPCS.W.F ERROR_COND ; Use 32-bit CCs, and assume no jump.

Table 4-7 Condition Codes

Code10 cc Condition Test Signed/
Unsigned

0 F False 0 Both

1 CC (LO) Carry Clear (Lower) !C Unsigned

2 CS (HS) Carry Set (Higher or Same) C Unsigned

3 EQ Equal Z Both

4 GE Greater or Equal (N&V) + (!N&!V) Signed

5 GT Greater Than (N&V&!Z) + (!N&!V&!Z) Signed

6 HI Higher Than C&!Z Unsigned

7 LE Less or Equal Z + (N&!V) + (!N&V) Signed

8 LS Lower or Same !C + Z Unsigned

9 LT Less Than (N&!V) + (!N&V) Signed

10 MI Minus N Signed

11 NE Not Equal !Z Both

12 PL Plus !N Signed

13 T True 1 Both

14 VC Overflow Clear !V Signed

15 VS Overflow Set V Signed

Notation:
& Indicates logical AND operation.
! Indicates logical negation.
+ Indicates logical OR.
www.ubicom.com 57

IP51xx Data Sheet – March 28, 2007
Load Effective Addresslea.4 d, s1
lea.2 d, s1
lea.1 d, s1

Operand size (bytes):1, 2, 4

Flags affected: none

Restriction: s1 must not be a register.

Description: d ← EA(s1)

Calculates the effective address (EA) for s1 and stores the address in the d.

The destination operand is always 32 bits. If the destination operand is an address register (An) and
the Destination Thread Select bit in CSR is not set, then a fast path eliminates hazards with a later An
use.

Examples:

moveai A0, #%hi(symbol)
lea.4 A1, %lo(symbol)(A0) ; Word address of symbol into A1
lea.2 A2, %lo(symbol)(A0) ; Half word address of symbol into A2
lea.1 A3, %lo(symbol)(A0) ; Byte address of symbol into A3

lea.4 A5, (A0,D4) ; A5 = A0 + (4*D4)
lea.2 A6, (A0,D4) ; A6 = A0 + (2*D4)
lea.1 A7, (A0,D4) ; A7 = A0 + (1*D4)

lea.2 A0, 4(A0) ; A0 = A0 + 4 with no bypass hazard

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

lea.4 0 0 0 0 0 d 1 1 1 0 0 s1

lea.2 0 0 0 0 0 d 1 1 1 0 1 s1

lea.1 0 0 0 0 0 d 1 1 1 1 1 s1
58 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Logical Shift Leftlsl.4 Dm, s1, #cnt
lsl.2 Dm, s1, #cnt
lsl.4 Dm, s1, Dn
lsl.2 Dm, s1, Dn

Operand size (bytes):2, 4

Flags affected: N, Z

Description: Dm ← s1[(31–Dn):0] || 0Dn

Dm ← s1[(31–#cnt):0] || 0#cnt

The contents of s1 are shifted left, inserting zeros into the emptied bits. The result is placed in Dm. The
number of bits to shift is specified by Dn or #cnt.
If s1 is a 16-bit operand, it is sign-extended to 32 bits before the operation.

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

lsl.4 0 0 0 1 0 0 1 0 0 0 0 0 Dm #cnt s1

lsl.2 0 0 0 1 0 0 1 0 0 0 1 0 Dm #cnt s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

lsl.4 0 0 0 1 0 1 1 0 0 0 0 0 Dm 0 Dn s1

lsl.2 0 0 0 1 0 1 1 0 0 0 1 0 Dm 0 Dn s1
www.ubicom.com 59

IP51xx Data Sheet – March 28, 2007
Logical Shift Rightlsr.4 Dm, s1, #cnt
lsr.2 Dm, s1, #cnt
lsr.4 Dm, s1, Dn
lsr.2 Dm, s1, Dn

Operand size (bytes):2, 4

Flags affected: N, Z

Description: Dm ← 0Dn || s1[31:Dn]
Dm ← 0#cnt || s1[31:#cnt]

The contents s1 are shifted right, inserting zeros into the emptied bits. The result is placed in Dm. The
number of bits to shift is specified by Dn or #cnt.
If s1 is a 16-bit operand, it is sign-extended to 32 bits before the operation.

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

lsr.4 0 0 0 1 0 0 1 0 0 1 0 0 Dm #cnt s1

lsr.2 0 0 0 1 0 0 1 0 0 1 1 0 Dm #cnt s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

lsr.4 0 0 0 1 0 1 1 0 0 1 0 0 Dm 0 Dn s1

lsr.2 0 0 0 1 0 1 1 0 0 1 1 0 Dm 0 Dn s1
60 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
16 x 16-bit Signed Fractional Multiply-Accumulatemacf[.C][.T] acc, s1, #imm
macf[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACC0_LO} +
SE48((s1 * #imm)<<1)

ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACCn_LO} +
SE48((s1 * s2)<<1)

ACC0_HI[31:16] = 0

Fractional multiply has an implicit left-shift by one; otherwise, it would end up with two sign bits.

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The macf instruction performs a multiply-accumulate function on 16-bit fixed point fractional data types
(S.15), most commonly used by Digital Signal Processing algorithms. macf performs an implicit mulf
operation and adds the 32-bit result to the 48-bit accumulator value. The format of the accumulator is
S16.31.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 1 0 1 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 1 0 1 C T S 0 A 0 s2 s1
www.ubicom.com 61

IP51xx Data Sheet – March 28, 2007
16 x 16-bit Signed Integer Multiply-Accumulatemacs[.C][.T] acc, s1, #imm
macs[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACC0_LO} +
SE48(s1 * #imm)

ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACCn_LO} +
SE48(s1 * s2)

ACC0_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The macs instruction performs a multiply-accumulate function on 16-bit fixed point signed data types
(S.15), most commonly used by Digital Signal Processing algorithms. macs performs an implicit muls
operation and adds the 32-bit result to the 48-bit accumulator value. The format of the accumulator is
S16.31.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 0 0 1 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 0 0 1 C T S 0 A 0 s2 s1
62 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
16 x 16-bit Unsigned Integer Multiply-Accumulatemacu[.C][.T] acc, s1, #imm
macu[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACC0_LO} +
ZE48(s1 * #imm)

ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACCn_LO} +
ZE48(s1 * s2)

ACC0_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The macu instruction performs a multiply-accumulate function on 16-bit fixed point unsigned data types
(S.15), most commonly used by Digital Signal Processing algorithms. macu performs an implicit mulu
operation and adds the 32-bit result to the 48-bit accumulator value. The format of the accumulator is
S16.31.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 0 1 1 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 0 1 1 C T S 0 A 0 s2 s1
www.ubicom.com 63

IP51xx Data Sheet – March 28, 2007
16 x 16-bit Unsigned Integer Multiply-Shift-Accumulatemacus[.C][.T] acc, s1, #imm
macus[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACC0_LO} +
((s1 * #imm)<<16)

ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACCn_LO} +
((s1 * s2)<<16)

ACC0_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The macus instruction performs a multiply-accumulate function on 16-bit fixed point unsigned data
types (S.15), most commonly used by Digital Signal Processing algorithms. macus performs an implicit
mulu operation and shifts the 32-bit result left by 16 bits before adding it to the 48-bit accumulator. This
instruction supports fast multi-precision multiplies.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 1 1 1 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 1 1 1 C T S 0 A 0 s2 s1
64 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
48-bit Addmadd.4[.C] acc, s1, s2
madd.2[.C][.T] acc, s1, s2

Operand size (bytes):2, 4

Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← SE48(s1) + SE48(s2)
ACCn_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If s2 specifies an accumulator, the entire 48-bit accumulator is used, and the T bit must be zero.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The madd instruction performs an addition function on signed 48-bit integers. The result is sign-
extended to 48 bits and stored in ACC0_HI and ACC0_LO. The upper 16 bits of ACC0_HI are cleared.

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

madd.4 0 0 1 1 0 1 1 0 0 0 0 C T S 0 A 0 s2 s1

madd.2 0 0 1 1 0 1 1 0 0 0 1 C T S 0 A 0 s2 s1
www.ubicom.com 65

IP51xx Data Sheet – March 28, 2007
48-bit Subtractmsub.4[.C] acc, s1, s2
msub.2[.C][.T] acc, s1, s2

Operand size (bytes):2, 4

Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← SE48(s1) - SE48(s2)
ACCn_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If s2 specifies an accumulator, the entire 48-bit accumulator is used, and the T bit must be zero.

For MSUB.2, s2 is always 16 bits. If s1 is a register, it is 32 bits. Where s1 and s2 are equal, the
difference (for example, MSUB.2 acc, Dx, Dx) is not necessarily zero.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The msub instruction performs a subtraction function on signed 48-bit integers. The result is sign-
extended to 48 bits and stored in ACC0_HI and ACC0_LO. The upper 16 bits of ACC0_HI are cleared.

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

msub.4 0 0 1 1 0 1 1 0 0 1 0 C T S 0 A 0 s2 s1

msub2 0 0 1 1 0 1 1 0 0 1 1 C T S 0 A 0 s2 s1
66 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
16 x 16-bit Signed Fractional Multiply-Subtractmsuf[.C][.T] acc, s1, #imm
msuf[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACC0_LO} -
SE48((s1 * #imm)<<1)

ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← {ACCn_HI[15:0]:ACCn_LO} -
SE48((s1 * s2)<<1)

ACC0_HI[31:16] = 0

Fractional multiply has an implicit left-shift by one; otherwise, it would end up with two sign bits.

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The msuf instruction performs a multiply-subtract function on 16-bit fixed point fractional data types
(S.15), most commonly used by Digital Signal Processing algorithms. msuf performs an implicit mulf
operation and subtracts the 32-bit result from the 48-bit accumulator value. The format of the
accumulator is S16.31.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 1 0 0 1 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 1 0 0 1 C T S 0 A 0 s2 s1
www.ubicom.com 67

IP51xx Data Sheet – March 28, 2007
Bitwise Mergemerge Dm, s1, #imm
merge Dm, s1, Dn

Operand size (bytes):4
Flags affected: N, Z

Restriction: SOURCE3 register must be loaded with a 32-bit selection control mask
(msk) before the operation.

Description: This is a 32-bit merge that operates as follows:
Dm ← (s1 & msk) | (#imm & !msk)
Dm ← (s1 & msk) | (Dn & !msk)

The merge instruction takes s1 and either Dn or #imm, merges their bits, and places the result in Dm.
Selection of bits is controlled by msk. Where there is a 1 in the msk, that bit from s1 is merged and
replaces the corresponding bit from Dn. See Figure 4-7.

Note: #imm is zero-extended to 32 bits for this instruction.

Figure 4-7 Merge Operation

The merge instruction performs the merge operation atomically, with respect to other threads that may
be running. If s1 and Dm are the same register, the merge becomes an atomic read-modify-write
operation-again with respect to other threads. However, if the destination is a peripheral register, the
operation is not atomic, with respect to the peripheral hardware. The latter will first see a read followed
shortly by a write.

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 0 1 1 1 0 0 0 Dm #imm s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 1 1 1 1 0 0 0 Dm 0 Dn s1

SOURCE3 Register

Source 2

Mask 1s

Source 1 Bit Field

Destination Bit Field

Bit Field Bit Field
68 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Movemove.4 d, s1
move.2 d, s1
movea d, s1
move.1 d, s1

Operand size (bytes):1, 2, 4

Flags affected: none

Description: d ← s1

8-Bit Move:
If d is a directly addressed register, then the upper 24 bits (31:8) are cleared to zero.

16-Bit Move:
If d is a directly addressed register, then the upper 16 bits (31:16) are cleared to zero.

Both the s1 and the d address must be two-byte aligned, The least-significant bit of the addresses must
be zero; otherwise, the result is architecturally undefined.

32-Bit Move:
Moves a long word from source to destination.

Both the s1 and the d address must be quad-byte aligned, The two least-significant bits of addresses
must be zero; otherwise, the result is architecturally undefined.

For movea, if the destination causes a cache miss, and the destination address is a multiple of 32, the
cache line is not read from memory, and the other 28 bytes on that cache line are undefined.

Examples:
move.4 D1,D2
move.1 D1,(A0)
move.4 D9,PORTA_DATA ; Register addressing mode
move.2 (A1)2++,(A2)2++
move.2 D4,COEF64(A6)
move.4 (SP)4++,A0 ; Saves address register to stack
move.4 A0,D0 ; Moves D0 → A0
move.4 D0,PARAMETER(SP) ; PARAMETER = Pos. mod-4 number

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

move.4 0 0 0 0 0 d 0 1 1 0 0 s1

move.2 0 0 0 0 0 d 0 1 1 0 1 s1

moveA 0 0 0 0 0 d 0 1 1 1 0 s1

move.1 0 0 0 0 0 d 0 1 1 1 1 s1
www.ubicom.com 69

IP51xx Data Sheet – March 28, 2007
Move 24-bit Address Immediate Valuemoveai An, #imm-24

Operand size (bytes):4
Flags affected: none

Description: Moves the value in #imm-24 into bits [30:7] of An. Bit 31 and bits [6:0] of An
are cleared.

When the destination address register is used as a base register in an addressing mode with a 7-bit
offset, it provides immediate addressability to any data location in two gigabytes of data address space.

A special bypass mechanism in the pipeline enables an address register that has been loaded via
moveai to be used immediately by the following instruction, without the 3-cycle address register load-
to-use delay that applies for other address register loads.

31 27 26 21 20 0

OPCODE O[23:21] ADDRESS
REGISTER SIGNED PC-RELATIVE OFFSET O[20:0]

1 1 1 0 0 #imm-24 An #imm-24
70 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Move 16-Bit Immediate Valuemovei d, #imm-16

Operand size (bytes):4, 2

Flags affected: none

Description: if (destination is a directly addressed register)
then
d ← SE32(#imm16)
else destination is a data memory address, so
d ← #imm16 ; 2-byte destination size

31 27 26 16 15 0

OPCODE DESTINATION SOURCE-1

1 1 0 0 1 d #imm-16
www.ubicom.com 71

IP51xx Data Sheet – March 28, 2007
16-bit Signed Fractional Multiplymulf[.C][.T] acc, s1, #imm
mulf[.C][.T] acc, s1, s2

Operand size (bytes):2
Flags affected: O

Description: {ACCn_HI[15:0]:ACCn_LO} ← SE48((s1 * #imm)<<1)
ACC0_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← SE48((s1 * s2)<<1)
ACC0_HI[31:16] = 0

Fractional multiply has an implicit left-shift by one; otherwise, it would end up with two sign bits.

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

Sticky O bit is only set, never cleared by these instructions.

The mulf instruction performs a multiply function on 16-bit fractional data types (S.15) most commonly
used by Digital Signal Processing algorithms. This instruction generates a 32-bit number in the S.31
format, sign-extends the 32-bit result to 48 bits, and stores the result to the 48 least-significant bits of
ACC0_HI and ACC0_LO. The upper 16 bits of ACC0_HI are cleared. #imm represents a number in the
range 0 to 31*2-15.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 1 0 0 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 1 0 0 C T S 0 A 0 s2 s1
72 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
16-bit Signed Integer Multiplymuls[.T] acc, s1, #imm
muls[.T] acc, s1, s2

Operand size (bytes):2
Flags affected: none

Description: {ACCn_HI[15:0]:ACCn_LO} ← SE48(s1 * #imm)
ACCn_HI[31:16] = 0

{ACCn_HI[15:0]:ACCn_LO} ← SE48(s1 * s2)
ACCn_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

The muls instruction performs a multiply function on signed 16-bit integers. The result is sign-extended
to 48 bits and stored in ACC0_HI and ACC0_LO. The upper 16 bits of ACC0_HI are cleared.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 0 0 0 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 0 0 0 C T S 0 A 0 s2 s1
www.ubicom.com 73

IP51xx Data Sheet – March 28, 2007
16-bit Unsigned Integer Multiplymulu[.T] acc, s1, #imm
mulu[.T] acc, s1, s2

Operand size (bytes):2
Flags affected: none

Description: {ACCn_HI[15:0]:ACCn_LO} ← ZE48(s1 * #imm)
ACCn_HI[31:16] = 0

{ACCn0_HI[15:0]:ACCn_LO} ← ZE48(s1 * s2)
ACC0_HI[31:16] = 0

s2 can be either Dn or acc; acc can be either ACC0 or ACC1.

If the destination is ACC0, the MAC_RC16 register will get the rounded and clipped result.

For definitions of the DSP control bits, see Table 4-3.

The mulu instruction mulu performs a multiply function on unsigned 16-bit integers. The result is zero-
extended to 48 bits and stored in the ACC0_HI and ACC0_LO registers.

31 27 26 25 21 20 16 15 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 0 0 0 0 1 0 C T S 0 A #imm s1

31 27 26 25 21 20 15 14 11 10 0

OPCODE OPCODE
EXTENSION DSP CONTROL SOURCE-2 SOURCE-1

0 0 1 1 0 1 0 0 0 1 0 C T S 0 A 0 s2 s1
74 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Logical Negationnot.4 d, s1
not.2 d, s1

Operand size (bytes):2, 4

Flags affected: N, Z

Description: d ← NOT s1

Performs a bitwise logical NOT operation on the contents of s1. The result is placed in d.

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

not.4 0 0 0 0 0 d 0 1 0 1 0 s1

not.2 0 0 0 0 0 d 0 1 0 1 1 s1
www.ubicom.com 75

IP51xx Data Sheet – March 28, 2007
Logical ORor.2 d, s1, Dn
or.4 d, s1, Dn

Operand size (bytes):2, 4

Flags affected: N, Z

Description: d ← s1 OR Dn

Combines the contents of s1 with the contents of Dn in a bitwise logical OR operation. The result is
placed in d.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

or.2 0 1 0 1 0 d 0 Dn s1

or.4 0 1 0 1 1 d 0 Dn s1
76 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Indirect with Offsetpdec d, s1

Operand size (bytes):4
Flags affected: none

Description: d ← EA(s1)

Identical to lea.4, except that the 7-bit offset in base+offset addressing mode is extended to 32 bits by
adding 21 one-bits (121 || 7-bit immediate || 00).

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 d 1 1 1 1 0 s1
www.ubicom.com 77

IP51xx Data Sheet – March 28, 2007
Return from Subroutineret s1

Operand size (bytes):n/a

Flags affected: none

Description: s1 → PC

The s1 operand is conventionally specified as SP or A7, but this is not a requirement.

31 27 26 16 15 11 10 0

OPCODE OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 s1
78 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
32-Bit Move to CSRsetcsr s1

Operand size (bytes):4
Flags affected: none

Description: CSR of current context ← s1

This instruction is used to switch context back, since changing the destination context field of CSR is
otherwise not possible to undo.

The assembler encodes the destination field with the direct register address of the CSR register.

31 27 26 16 15 11 10 0

OPCODE DESTINATION OPCODE
EXTENSION SOURCE-1

0 0 0 0 0 CSR 1 0 0 1 0 s1
www.ubicom.com 79

IP51xx Data Sheet – March 28, 2007
Shift Doubleshftd Dm, s1, #imm
shftd Dm, s1, Dn

Operand size (bytes):4
Flags affected: N, Z

Restriction: SOURCE3 register must be loaded with a 32-bit value to be shifted before
the operation.
s1 is a 32-bit operand.

Description: 64-bit funnel shift that operates as follows:
Dm ← ((SOURCE3 || s1) >> #imm)[31:0]

Dm ← ((SOURCE3 || s1) >> Dn[4:0])[31:0]

Sometimes a bit field spans word boundaries. The shift-double instruction, shftd, facilitates access to
such fields. It uses a 64-bit funnel shifter to right-shift two 32-bit source operands that are concatenated.
The shift count comes from Dn or #imm and one of the shifter inputs from the SOURCE3 register. The
operation is illustrated in Figure 4-8.

Figure 4-8 Shift-Double (shftd) Instruction

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 0 1 1 0 1 0 0 Dm #imm s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

0 0 0 1 0 1 1 1 0 1 0 0 Dm 0 Dn s1

Shift Count

Bit FieldBit Field

Bit FieldBit Field

SOURCE3 Register Source 1

Destination
80 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Shift and Mergeshmrg.2 Dm, s1, #imm
shmrg.1 Dm, s1, #imm
shmrg.2 Dm, s1, Dn
shmrg.1 Dm, s1, Dn

Operand size (bytes):1, 2

Flags affected: N, Z

Description: Shift and merge 1 byte:
Dm ← (Dn << 8) | (s1 & 0x000000FF)
Dm ← (#imm << 8) | (s1 & 0x000000FF)

Shift and merge 2 bytes:
Dm ← (Dn << 16) | (s1 & 0x0000FFFF)
Dm ← (#imm << 16) | (s1 & 0x0000FFFF)

Because the CPU requires memory operands to be aligned in accordance with the operand size, there
is an issue of how to access unaligned data fields within byte streams or external data structures. The
shift and merge instructions, shmrg.1 and shmrg.2, support assembly of larger operands from byte or
short word data streams, respectively.

31 27 26 25 21 20 19 16 15 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

shmrg.2 0 0 0 1 0 0 1 1 1 1 0 0 Dm #imm s1

shmrg.1 0 0 0 1 0 0 1 1 1 1 1 0 Dm #imm s1

31 27 26 25 21 20 19 16 15 14 11 10 0

OPCODE OPCODE
EXTENSION DESTINATION SOURCE-2 SOURCE-1

shmrg.2 0 0 0 1 0 1 1 1 1 1 0 0 Dm 0 Dn s1

shmrg.1 0 0 0 1 0 1 1 1 1 1 1 0 Dm 0 Dn s1
www.ubicom.com 81

IP51xx Data Sheet – March 28, 2007
16/32-Bit Subtractsub.2 d, s1, Dn
sub.4 d, s1, Dn

Operand size (bytes):2, 4

Flags affected: C, Z, N, V

Description: d ← s1 - Dn

The contents of Dn are subtracted from the contents of S1. The result is placed in d.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

sub.2 1 0 0 0 1 d 0 Dn s1

sub.4 1 0 0 1 0 d 0 Dn s1
82 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
32-Bit Subtract with Carrysubc d, s1, Dn

Operand size (bytes):4
Flags affected: C, Z, N, V

Description: d ← s1 – Dn – !C (32-bit C Flag)
where: C = 1 if there is no borrow.

The contents of Dn are subtracted from the contents of s1. The result is placed in d. If a carry occurs,
C is set to 1.

subc uses the C flag in the 32-bit condition code to implement extended-precision arithmetic
operations. The C is used for any carry and borrow between different 32-bit words of an extended
operand. (There is no subc.2.) The complement of the C on input is the borrow value for the operation.
The borrow is effectively added to the right-hand operand (the subtrahend) before it is subtracted from
the left-hand operand. (In practice, what that means is that, whereas normal subtraction is implemented
by adding the logical complement of the right-hand operand to the left-hand operand, with a forced 1 as
carry in, subc uses the input value of the C as the carry in.)

Z is treated differently for subc than for other instructions. If the result is nonzero, Z is cleared, but if the
result is zero, Z is not changed.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

1 0 0 1 1 d 0 Dn s1
www.ubicom.com 83

IP51xx Data Sheet – March 28, 2007
Suspendsuspend

Operand size (bytes):n/a

Flags affected: none

Description: PC ← Address of next instruction
MT_ACTIVE[thread] ← 0

Suspends the current thread until an interrupt condition for that thread occurs.

31 27 26 16 15 11 10 0

OPCODE OPCODE
EXTENSION

0 1 0 0 0 0 0 0 0 0 0 0 0
84 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Logical Exclusive-ORxor.2 d, s1, Dn
xor.4 d, s1, Dn

Operand size (bytes):2, 4

Flags affected: Z, N

Description: d ← s1 XOR Dn

Combines the contents of s1 with the contents of Dn in a bitwise logical Exclusive-OR operation. The
result is placed in d.

31 27 26 16 15 14 11 10 0

OPCODE DESTINATION SOURCE-2 SOURCE-1

xor.2 0 1 1 0 0 d 0 Dn s1

xor.4 0 1 1 0 1 d 0 Dn s1
www.ubicom.com 85

IP51xx Data Sheet – March 28, 2007
5.0 Programmer’s Reference

5.1 IP51xx Startup and Initialization
At startup, or after reset, thread 0 is active and
schedulable (bit 0 in MT_EN, MT_ACTIVE, and
MT_DEBUG_ACTIVE are set to 1). All other threads are
disabled. Thread 0 begins execution at a fixed flash ROM
address (6000 0000) and is responsible for these
initialization steps:

1. Load the instruction SRAM.
2. Load the HRT table and all thread control registers

(including PC).
3. Initialize global semaphores and shared memory.

When the initialization is complete, thread 0 enables the
other initialized threads, which then are free to execute.

5.2 Interrupt Handling
The multithreaded nature of the Instruction Set
Architecture enables a much more efficient alternative to
a traditional vectored interrupt system. This section
describes how that alternative works, and how
applications can be structured to take advantage of it.

5.2.1 Context Switching
There are two types of context switching: hardware and
software.

Hardware context switching is the switching between
different physical contexts maintained by the
multithreading hardware. The overhead for this type of
context switch is zero. The processor can switch from
execution in thread A to thread B with no cycles lost to any
switching overhead.

Software context switching is what an RTOS does when it
preemptively suspends the execution of the currently
running task in order to reassign the processor resource
that the task was using to a newly enabled task of a higher
priority. This is also what has to happen in systems with
vectored interrupts. Because the transfer is
asynchronous, the ISR has no way of knowing what
registers the interrupted task was using or whether the
RTOS will even return to that task after the interrupt has
been handled. The ISR must save the full context of the
interrupted task before it begins to do its own work.

Unlike the zero-overhead hardware context switch, a
software context switch is no less expensive on the
IP51xx processor than it is on most other processor
architectures. If anything, it can be more expensive
because of the larger number of physical registers that

must be saved and restored, and the inability for software
to save or restore more than one register per cycle. As a
result, software context switching should be avoided as
much as possible.

5.2.2 Avoiding Software Context
Switching

The multithreading architecture makes it easy to avoid
most software context switching. Rather than preempting
a running task in order to use its thread resources,
interrupts can be handled in one or more other threads
dedicated to that purpose.

When there are no interrupts that need to be handled, the
interrupt handling threads are suspended and consume
no processor cycles. When an interrupt is asserted, it
enables the execution of its handler thread. The handler
thread, having higher priority, preempts processor cycles
that would otherwise have been allocated to some other
thread, but it does not use any of the context resources of
the threads it displaces. There is no interrupt context that
it needs to save, so the interrupt handler can begin
immediately to service the interrupt.

The two 32-bit interrupt mask registers (INT_MASK0 and
INT_MASK1) allow the thread-scheduling logic fine-
grained control as to which interrupt signals are seen by
which threads. A thread can be:

• Shielded from all interrupts.
• Set up to respond to one particular interrupt or a

particular set of related interrupts.
• Set up to respond to all interrupts that do not have

their own dedicated handler threads.

The most time-critical interrupts will have dedicated, HRT
threads waiting to respond to them the instant they are
asserted. Less critical interrupts can be grouped for
handling by a common handler thread. In that case, the
handler does not automatically know which interrupt will
occur next, and a small overhead is paid at the start of the
handler’s execution to identify which interrupt has
awakened it. This overhead can be on the order of ten
cycles (including the branch to the appropriate sub-
handler), which is still an order of magnitude less than the
overhead incurred for a software context switch.
86 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.2.3 Minimizing Interrupt Latency
When one thread handles multiple independent
interrupts, it is not guaranteed that the thread will be
suspended and waiting for an interrupt when the next
interrupt arrives. In order to avoid the cost of a forced
software context switch, the new interrupt does not
preempt the handling of a previous interrupt. Instead, it
waits (pending) until the handler has completed its
response to the prior interrupt. At that point, the handler
issues a suspend operation to wait for the next interrupt
that it is configured to handle. The presence of the
pending interrupt causes the thread to immediately re-
awaken so that the suspend effectively becomes a no-op,
even though pipeline timing may not be identical.

The latency incurred while an interrupt waits for a
common interrupt handler to finish responding to a
previous interrupt is conceptually no different from the
latency incurred, in a vectored priority interrupt system,
when a lower priority interrupt must wait while a higher
priority interrupt is handled. For the IP51xx’s interrupt
system, the latency tends to be lower, because interrupt
handlers are not saddled with the overhead of software
context switching. And, of course, the latency can be
avoided altogether, for critical interrupts, simply by
assigning the interrupt its own handling thread. It does,
however, suggest that as a matter of design policy,
interrupt handlers should be kept short. If an interrupt
requires an extended response, the handler should simply
1) read and save any critical information needed for
interrupt response, and 2) signal the RTOS to activate a
task that does the extended processing required to fully
respond to the interrupt.

5.2.4 Creating a Traditional ISR Structure
The inclusion of multithreading features in the IP51xx core
does not preclude the use of a traditional Interrupt Service
Routine (ISR) structure. In most processor architectures
there are two threads: the mainline code that executes
most of the time, and the ISR that executes periodically
and mutually exclusively with the mainline code.

By using two threads, a traditional ISR can be created.

The mainline code is executed in one or more low priority
NRT threads. The ISR is a thread that is high priority NRT.
By using this set of thread priorities each mainline thread
will be completely excluded by the higher priority ISR
thread, creating the same scheduling mechanism as a
traditional ISR.

5.3 Using the Debug Port
The Debug Port provides a test interface through which
an external host can access internal resources within the
IP51xx for debug purposes. The signals on the Debug
Port are described in Section 6.10.

Section 5.3.1 explains how the host communicates with
the debug port and lists the available host commands.

Section 5.3.2 lists the debug port registers, and shows
how the various debug commands access these
registers.

Section 5.3.3 lists a variety of debug operations that can
be performed, and details the command sequences that
can accomplish each of these operations.

5.3.1 Debug Commands
The host communicates with the debug port by issuing
40-bit packets. A packet consists of an 8-bit opcode, and
a 32-bit payload. The 8-bit opcode consists of a 0 followed
by a 7-bit command.

Registers in the debug port which are accessible by the
host are addressed by the command. Each Host access
consists of two packets — one packet is sent from the
host to the debug port and one packet is sent to the host
from the debug port. The latter, which is also 40 bits,
consists of a 0 followed by the previous opcode followed
by the data which is expected by that (previous)
command. This provides the host with a mechanism to
read back the content of one or more specified registers.
Some host commands set or clear registers. Others write
the content of packet’s payload to a register, or read back
a register.

Table 5-1 shows the available host commands.
www.ubicom.com 87

IP51xx Data Sheet – March 28, 2007
Table 5-1 Debug Interface Host Commands
Command

Code Command Name Description

7’h00 NOP Perform no operation.
7’h01 OPEN Activate the debug port.
7’h02 CLOSE Close the debug port. Future commands will be ignored.
7’h03-04 Reserved
7’h05 MAIL_STATUS Read the mailbox status.

Note: Always wait more than 3 core clock cycles after reading the mail box
(RD_MAIL_BOX command) before issuing the MAIL_STATUS command. This
allows time for proper updating of the mail status to reflect the current state of
MP_OUT_MBOX[31:0].

7’h06 DBG_RST_REQ Request a core reset.
7’h07 WR_MAIL_BOX Write a 32-bit word into the incoming mailbox. The debug port returns the status of

the mailbox buffers.
7’h08 RD_MAIL_BOX Read a 32-bit word from the outgoing mailbox buffer.
7’h09 CLEAN_MAIL Reset the incoming mailbox’s write pointer and the outgoing mailbox’s read

pointer such that the two mailboxes are empty.
7’h0A TEST_MODE Write to the Test Register with data.
7’h0B-12 Reserved
7’h13 HALT_MP Stop all threads (by setting the DBG_MP_HALT register to 1).
7’h14 REL_MP Release all threads (by clearing the DBG_MP_HALT register to 0).
7’h15 FORCE_MP Force a thread to execute (through the dbg_mp_force vector). The

DBG_MP_FORCE [‘MP_TNUM-1:0] register is set by Data bits [‘MP_TNUM-1:0].
Only one thread can be forced at any given time.

7’h16 RD_MP_REG Perform a read of processor registers.
7’h17 SET_MP_

REG_ADR
Set the processor register address used for register write. Data contains
the processor register address.

7’h18 WR_MP_REG Write data to the processor register whose address is set by the last
SET_MP_REG_ADR command.

7’h19 RD_IPORT_STAT Read the status of the instruction port.
7’h1A WR_IBUF Write a 32-bit instruction to a 1-entry instruction buffer (IB) targeting a thread.
7’h1B WR_RST_

HALT_MP_EN
Write to the DBG_RST_HALT_MP_EN register. When set, this register enables the
halt of the processor when internally generated reset conditions occur. When clear,
internally generated reset conditions cause a chip reset.

7’h1C RD_RST_
HALT_MP

Read the status of the DBG_MP_HALT and DBG_RST_CAUSE_HALT registers.

7’h1D-7F Reserved
88 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.3.2 Debug Registers
Table 5-2 Debug Interface Host Accessible Registers

Register Name Read By Written By Reset Description
MP_IN_MBOX_FULL MAIL_STATUS,

WR_MAIL_BOX,
CLEAN_MAIL:
{mp_in_mbox_full,
mp_in_mbox_empty,
mpout_mbox_full,
mp_out_mbox_empty,
28’h0}

CLEAN_MAIL: 0 0 (1) MP Input MBox full
MP_IN_MBOX_EMPTY CLEAN_MAIL: 1

WR_MAIL_BOX: 0
1 (1) MP Input MBox empty

MP_OUT_MBOX_FULL CLEAN_MAIL: 0
RD_MAIL_BOX: 0

0 (1) MP Output MBox full

MP_OUT_MBOX_EMPTY CLEAN_MAIL: 1 1 (1) MP Output MBox empty

MP_IN_MBOX[31:0]* WR_MAIL_BOX:
cur_pkt_data[31:0]

MP Input MBox
FIFO input

MP_OUT_MBOX[31:0]* RD_MAIL_BOX MP Output MBox
FIFO output

DBG_INT_SET WR_MAIL_BOX
set to ‘1’ for one cycle.

Interrupt request to MP

DBG_MP_HALT HALT_MP,
REL_MP: (3)
{31’h0,dbg_mp_halt}
WR_RST_HALT_MP_EN,
RD_RST_HALT_MP:
{29’h0,dbg_rst_cause_halt,
dbg_mp_halt,
dbg_rst_halt_mp_en}

HALT_MP: 1
REL_MP: 0

0 (2) Halt MP
Blocks all instruction
execution.

FORCE_MP
[‘MP_TNUM-1:0]

FORCE_MP: (3)
{(32-’MP_TNUM)’h0,
dbg_mp_force
[‘MP_TNUM-1:0]}

FORCE_MP:
cur_pkt_data
[MP_TNUM-1:0]

0 (1) Force MP Thread
Force chosen thread to
run.

DBG_MP_RREQ RD_MP_REG:
set to ‘1’ for one cycle.

Request to read
specified MP register

MP_DBG_RDATA[31:0] RD_MP_REG:
mp_dbg_rdata[31:0]

Content of MP register
(signal mp_dbg_rdata),
the address of which is
specified in the payload
of the RD_MP_REG
command and is stored
in DBG_MP_ADDR_
WDATA

DBG_MP_WR_ADR[31:0] SET_MP_REG_ADR: (3)
dbg_mp_wr_adr[31:0]

SET_MP_REG_ADR:
cur_pkt_data[31:0]

MP register address to
be used in command
WR_MP_REG

DBG_MP_WREQ WR_MP_REG:
set to ‘1’ for one cycle.

Request to write to
specified MP register

DBG_MP_ADDR_
WDATA[31:0]

RD_MP_REG:
cur_pkt_data[31:0]
WR_MP_REG:
dbg_mp_wr_adr[31:0]
– (1st cycle)
cur_pkt_data[31:0]
– (2nd cycle)

Contains address of an
MP register and data to
be written to that MP
register.
www.ubicom.com 89

IP51xx Data Sheet – March 28, 2007
IFETCH_REQ_TNUM[3:0] RD_IPORT_STAT,
WR_IBUF:
{ifetch_req_tnum[3:0],
ifetch_req_addr[27:2],
ifetch_req_vld,
ibuf_empty}

Contains the thread
number of a thread that
is fetching from the
Debug Port. Resides in
bits [31:28] of the
response word.

IFETCH_REQ_
ADDR[25:0]

RD_IPORT_STAT,
WR_IBUF:
{ifetch_req_tnum[3:0],
ifetch_req_addr[27:2],
ifetch_req_vld,
ibuf_empty}

Contains bits [27:2] of
the address of the
instruction that is
fetching from the Debug
Port. Resides in bits
[27:2] of the response
word.

IFETCH_REQ_VLD RD_IPORT_STAT,
WR_IBUF:
{ifetch_req_tnum[3:0],
ifetch_req_addr[27:2],
ifetch_req_vld,
ibuf_empty}

0 (1) Set to ‘1’ if the instruction
fetch request to the
Debug Port is valid.
Resides in bit [1] of the
response word.

IBUF_EMPTY RD_IPORT_STAT,
WR_IBUF:
{ifetch_req_tnum[3:0],
ifetch_req_addr[27:2],
ifetch_req_vld,
ibuf_empty}

WR_IBUF: 0 1 (1) Instruction Buffer Empty.
Set to ‘0’ when the host
puts a word to IBUF; set
to ‘1’ when the CPU
reads from it. Resides in
bit [0] of the response
word.

INST_BUF[31:0] WR_IBUF:
cur_pkt_data[31:0]

Instruction Buffer

DBG_RST_HALT_MP_EN WR_RST_HALT_MP_EN,
RD_RST_HALT_MP:
{29’h0,
dbg_rst_cause_halt,
dbg_mp_halt,
dbg_rst_halt_mp_en}

WR_RST_HALT_MP_EN:
cur_pkt_data[0]

0 (2) If set to ‘1’ it enables halt
of the CPU on any
internal reset cause.
Resides in bit [0] of the
response word.

DBG_RST_CAUSE_HALT WR_RST_HALT_MP_EN,
RD_RST_HALT_MP:
{29’h0,
dbg_rst_cause_halt,
dbg_mp_halt,
dbg_rst_halt_mp_en}

0 (2) It is set to ‘1’ if DBG_
RST_HALT_MP_EN=1,
and an internal reset
cause happens. It is set
to ‘0’ when HALT_MP is
cleared. Resides in bit [2]
of the response word.

Notes:
1. MP = CPU = processor.
2. (1) specifies a core reset.
3. (2) specifies a chip reset.
4. (3) returns the new value of the register that is set or written by this same command.
5. * specifies that this is actually a FIFO, rather than a register.

Table 5-2 Debug Interface Host Accessible Registers (continued)
Register Name Read By Written By Reset Description
90 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.3.3 Debug Operations
Ubicom uses GDB as the front-end for its debugger
implementation. The backend for GDB utilizes the Debug
Port on the IP51xx to retrieve and set state in the
processor.

The host can perform the following functions through the
Debug Port:

• Starting a debugging session
• Ending a debugging session
• Stopping all threads
• Restarting all threads
• Setting up the debugger assistant thread
• Restoring the debugger assistant thread to its original

state
• Reading register data
• Writing register data
• Reading memory
• Writing memory
• Flushing the d-cache for a range of addresses and

invalidating the i-cache for the address range
• Setting a breakpoint
• Removing a breakpoint
• Single-stepping code
• Switching threads to inspect the state of a different

thread
• Waiting for breakpoint events
• Resetting the CPU
• Erasing and writing flash

The rest of this section describes the Debug Port
command sequences and processor instruction
sequences that are injected via the debug space to
implement each of the above operations.

In the following discussions, CPU refers to the processor,
and IP5K refers to the IP51xx.

5.3.3.1 Starting a Debugging Session
Any external debugger must first activate the Debug Port
to accept Debug Port commands. This is done by issuing
OPEN via the debug port. Until the IP5K sees this
command, it will ignore any commands issued to the
Debug Port. On reset the processor is in a state where it
ignores all commands. The IP5K backend will issue the
OPEN command when the user issues the target ip5k
command from the debugger command line.

5.3.3.2 Ending a Debugging Session
When a user decides to close down a debugging session
by either issuing detach or quit commands, the Ubicom
debugger will restore the state of the current thread back
to what it was at the point to attachment. It will restart all

the threads that were running at the point of attachment.
The backend will then issue a CLOSE command to
shutdown the debugger interface.

All subsequent description assumes that the OPEN
command has been issued and the debug port is actively
accepting commands.

5.3.3.3 Stopping All Threads
To stop all threads issue a HALT_MP command with a
payload data of 1. This will freeze all threads.

5.3.3.4 Restarting All Threads
To restart all the threads issue REL_MP with a payload
data of 0. The will allow all threads to resume execution.

5.3.3.5 Setting Up the Debugger Assistant
Thread

All operations described from this point on need the
assistance of code running on the IP5K. The Ubicom
debugger running on the host will first stop all the threads
by issuing a HALT_MP command via the backend. The
debugger backend then commandeers one of the IP5K
hardware threads to act as a debugger assistant. Before
a thread can be used as a debugger assistant, some of its
register state has to be preserved. The debugger
preserves previous_pc, pc, d0, a0, a1, d0. During the
processor restart process these registers will be restored.

The sequence of commands listed below is issued to set
up a debugger assistant thread. In this example, the
debugger assistant thread is hardware thread number 2.

1. Retrieve the current PC for thread 2: Issue
RD_MP_REG with payload (0xd0 | 2 <<10). Issue
NOP to retrieve the PC from the debugger port.

2. Change thread 2 PC to 0x1000000 (point to debug
space): Issue SET_MP_REG_ADDR with payload
(0xd0 | 2<<10). Issue WR_MP_REG with payload
0x1000000.

3. Force thread 2 to start running: Issue FORCE_MP
with payload (1 << 2).

4. Issue RD_PORT_STAT, RD_PORT_STAT. Port
status tells us whether we can issue commands via
the Debug Port.

5. Get the cpu to execute a move.4 scratchpad0,
previous_pc instruction by sending it through the
Debug Port: Issue WR_IBUF with payload (move.4
scratchpad0, previous_pc).

6. Read content of scrathcpad0 register: Issue
RD_MP_REG with payload 0x180. This is to
retrieve previous_pc from scratchpad0.
www.ubicom.com 91

IP51xx Data Sheet – March 28, 2007
7. Get the cpu to execute a move.4 scratchpad3, a1
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad3,
a1).

8. Get the cpu to execute a move.4 scratchpad2, a0
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad2,
a0).

9. Get the cpu to execute a move.4 scratchpad1, csr
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad1,
csr).

10. Get the cpu to execute a move.4 scratchpad0, d0
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad0,
d0).

11. Get the cpu to execute a movei a0,
#%hi(0x01000300) instruction by sending it through
the debug port: Issue WR_IBUF with payload
(movei a0, %hi(0x01000300). Load a0 with base
address of mailbox. The mailbox is used in other
data transfer operations.

12. Read content of the scrathcpad0 register: Issue
RD_MP_REG with payload 0x180. This is to
retrieve d0 from scratchpad0.

13. Read content of the scrathcpad1 register: Issue
RD_MP_REG with payload 0x184. This is to
retrieve csr from scratchpad1.

14. Read content of the scrathcpad2 register: Issue
RD_MP_REG with payload 0x188. This is to
retrieve a0 from scratchpad2.

15. Read content of the scrathcpad3 register: Issue
RD_MP_REG with payload 0x18c. This is to
retrieve a1 from scratchpad3.

16. Issue NOP to finish off the command sequence.

5.3.3.6 Restoring the Debugger Assistant
Thread to its Original State

The sequence of commands listed below is used to
restore the state of a debugger assistant thread back to its
original state. It should be noted that previous_pc is a
read only register, and it cannot be restored to its original
state. Registers d0, a1, a2, csr can be restored as
follows:

1. Load the saved copy of d0 to the mailbox: Issue
WRITE_MAILBOX with payload copy of d0.

2. Get the cpu to execute move.4 d0, (a0) instruction
by sending it through the debug port: Issue
WR_IBUF with payload (move.4 d0, (a0)).

3. Load saved copy of csr to the mailbox: Issue
WRITE_MAILBOX with payload copy of csr.

4. Get the cpu to execute a move.4 csr, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 csr, (a0)).

5. Load saved copy of a2 to the mailbox: Issue
WRITE_MAILBOX with payload copy of a1.

6. Get the cpu to execute a move.4 a1, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 a1, (a0)).

7. Load saved copy of a0 to the mailbox: Issue
WRITE_MAILBOX with payload copy of a0.

8. Get the cpu to execute move.4 a0, (a0) instruction
by sending it through the debug port: Issue
WR_IBUF with payload (move.4 a0, (a0)).

9. Stop the debug assistant thread: Issue FORCE_MP
with payload 0.

10. Change thread 2 PC to the original address: Issue
SET_MP_REG_ADDR with payload (0xd0 | 2<<10).
Issue WR_MP_REG with payload saved value of
pc.

5.3.3.7 Reading Register Data
To read the register contents of thread 5 (for example) we
have to make thread 5 the debugger assistant thread
using the sequence described in Section 5.3.3.5. If the
current debugger assistant thread is not 5 and happens to
be thread 2, then we first restore the state of thread 2 by
using the sequences listed in Section 5.3.3.6. We then
make thread 5 the debugger assistant using the
sequences in Section 5.3.3.5. Once thread 5 has been set
up as the debugger assistant, we then do the following to
retrieve the contents of register a5.

1. Get the cpu to execute a move.4 scratchpad0, a5
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad0,
a5).

2. Read content of the scrathcpad0 register: Issue
RD_MP_REG with payload 0x180. Issue NOP. This
is to retrieve a5 from scratchpad0.

If the request is to recover contents of d0, a0, a1, pc,
previous_pc, then the debugger backend routines serve
up the data that was saved while setting up the debugger
assistant thread.

5.3.3.8 Writing Register Data
To write the register contents of thread 5 we have to make
thread 5 the debugger assistant thread, as mentioned in
Section 5.3.3.7. Once that is done, then issue the
following to change the contents of register a5:

1. Load the new value of a5 to the mailbox. Issue
WRITE_MAILBOX with payload the new value of
a5.
92 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
2. Get the cpu to execute a move.4 a5, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 a5, (a0)).

If the destination register is d0, a0, a1, csr, pc, then the
debugger backend routine changes these values in the
internal saved state that is it maintaining for the debugger
assistant thread. The new values will take effect as soon
as this thread is restored.

5.3.3.9 Reading Memory
The Ubicom debugger backend is usually passed a
source address and a length (in bytes) to read. If the read
address is not word aligned the backend will round the
address down to the lower word aligned address. If the
end address (start address + length) is not word aligned
then the backend will increase the length until the end
address is also word aligned. The aligned end address
minus the aligned start address gives the length in bytes
that will be read via the Debug Port interface. The
debugger backend then supplies only the data requested
by the front end. The (aligned length)/4 gives the number
of words that have to be read from the IP5K. The
sequence for reading bytes of data is as follows:

1. Calculate the end address of the transfer. End addr
= start addr+length

2. Round down the start address.
3. Round up the end address.
4. Number of words = (End addr - Start addr)/4
5. Load start address to the mailbox: Issue

WRITE_MAILBOX with payload start address of the
transfer.

6. Get the cpu to execute a move.4 a1, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 a1, (a0)).
Register a1 now holds the base address of the
transfer block.

7. While (num words –)
8. Get the cpu to execute a move.4 scrathpad0,

(a1)4++ instruction by sending it through the debug
port: Issue WR_IBUF with payload (move.4
scrathpad0, (a1)4++).

9. Read the content of scrathcpad0 register: Issue
RD_MP_REG with payload 0x180. This is to
retrieve memory from scratchpad0.

10. Issue NOP
11. Go back to Step 7.

5.3.3.10 Writing Memory
As in the case of read, we limit writes to be word aligned.
To do that, a given data transfer can be separated into 3
parts. There may be leading section that is 1, 2, or 3 bytes
long because the start is misaligned. There is a center

section where everything is aligned. There may also be a
trailing section that is 1, 2, or 3 bytes long because the
end address is misaligned. If there is a leading misaligned
section, we round down the address and read 4 bytes
from that address. We then change the extra leading
bytes in this block of 4 bytes. For the trailing bytes we read
the 4 bytes that contain those and change the appropriate
bytes. Now we can have a write buffer where we can start
writing from an aligned boundary and end the writing at an
aligned boundary. Once we are done with the leading and
trailing manipulation we will have an aligned buffer of data
to write and we know the start address of this aligned
block and its length in words. Now the sequence to write
this data is as follows:

1. Load the start address to the mailbox: Issue
WRITE_MAILBOX with payload the start address of
the transfer.

2. Get the cpu to execute a move.4 a1, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 a1, (a0)).
Register a1 now holds the base address of the
transfer block.

3. While (num words –)
4. Load the transfer data to the mailbox: Issue

WRITE_MAILBOX with the transfer data. Bump up
the buffer pointer.

5. Get the cpu to execute a move.4 (a1)4++, (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 (a1)4++,
(a0)).

6. Go back to Step 3.

5.3.3.11 Flushing the D-Cache and
Invalidating the I-Cache

The backend is passed the start address and length in
bytes for the data block. Compute the end address of the
block. Each cache line is 32 bytes long. Use the following
sequence to accomplish this:

1. Compute the end address (Start address + length).
2. Set the number of cache lines = 0.
3. If end address is not cache aligned, then set the

number of cache lines = 1.
4. End_address &= ~0x1f.
5. Start_address &= ~0x1f
6. Number of cachelines += (Start address - end

address)/32
7. Get the cpu to execute a move.4 scratchpad0, a2

instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 scratchpad0,
a2). This saves a2, which will be restored at the
end.
www.ubicom.com 93

IP51xx Data Sheet – March 28, 2007
8. Get the cpu to execute a movei a1,
#%hi(0x1000600) instruction by sending it through
the debug port: Issue WR_IBUF with payload
(movei a1, #%hi(0x1000600). This loads the base
address of the D-Cache control block into a1.

9. Get the cpu to execute a movei a2,
#%hi(0x1000500) instruction by sending it through
the debug port: Issue WR_IBUF with payload
(movei a2, #%hi(0x1000500). This loads the base
address of the I-Cache control block into a2.

10. Load 0x90 to the mailbox: Issue WRITE_MAILBOX
with payload 0x90.

11. Get the cpu to execute a move.4 16(a1), (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 16(a1), (a0)).
This loads the D-cache control register with a “Flush
D-cache by address” operation.

12. Load 0x60 to the mailbox: Issue WRITE_MAILBOX
with payload 0x60.

13. Get the cpu to execute a move.4 16(a2), (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 16(a2), (a0)).
This loads the I-cache control register with an
“Invalidate I-cache by address” operation.

14. While (number of cache lines –)
15. Load the start address to the mailbox: Issue

WRITE_MAILBOX with the start address as the
payload.

16. Get the cpu to execute a move.4 (a1), (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 (a1), (a0)).
This loads the D-cache address register with the
cache line start address.

17. Get the cpu to execute a bset 16(a1), 16(a1), #0x3
instruction by sending it through the debug port:
Issue WR_IBUF with payload (bset 16(a1), 16(a1),
#0x3). Activate the D- cache flush operation by
setting the start bit in the cache control register.

18. Load the start address to the mailbox: Issue
WRITE_MAILBOX with the start address as the
payload.

19. Get the cpu to execute a move.4 (a2), (a0)
instruction by sending it through the debug port:
Issue WR_IBUF with payload (move.4 (a2), (a0)).
This loads the I-cache address register with the
cache line start address.

20. Get the cpu to execute a bset 16(a2), 16(a2), #0x3
instruction by sending it through the debug port:
Issue WR_IBUF with payload (bset 16(a2), 16(a2),
#0x3). Activate the I- cache invalidation operation
by setting the start bit in the cache control register.

21. Start Address += 32
22. Go back to Step 14.

5.3.3.12 Setting a Breakpoint
Setting a breakpoint is just a special case of reading and
writing memory. The Ubicom backend does not support
writing breakpoints to flash. To insert a break point you
have to read back the instruction that is currently present
at the address and save it in the host and then write a
bkpt, #-1 instruction to cause all threads to stop when it
gets executed. If the destination of the breakpoint is in the
DDR SDRAM, then flush the D-Cache and invalidate the
I-cache for this address, using the sequence described in
Section 5.3.3.11.

5.3.3.13 Removing a Breakpoint
Removing a breakpoint is just a special case of reading
and writing memory. In the Ubicom backend we will read
the memory at the given location and make sure that it is
a bkpt, #-1 instruction. If it is, then we replace it with the
instruction data passed to us by the GDB front end. If the
destination of the breakpoint is in the DDR SDRAM, then
we flush the D-Cache and invalidate the I-cache for this
address, using the sequence described in Section
5.3.3.11.

5.3.3.14 Single-Stepping Code
In this example we single step thread 4. Currently thread
4 is being used as the debugger assistant thread. The
sequence is as follows:

1. If the debugger assistant thread is the same as the
single stepping thread, then restore the state of the
single stepping thread. Now pick some other thread
and make it the debugger assistant thread. Refer to
Section 5.3.3.5 and Section 5.3.3.6 for details.

2. Get the cpu to execute a movei
mt_dbg_active_clr, #-1 instruction by sending it
through the debug port: Issue WR_IBUF with
payload (movei mt_dbg_active_clr, #-1). This will
suspend all threads and keep them from executing.

3. Get the cpu to execute a movei
mt_dbg_active_set, #(1<<4) instruction by sending
it through the debug port: Issue WR_IBUF with
payload (movei mt_dbg_active_set, #(1<<4). This
makes only thread 4 active and runable.

4. Get the cpu to execute a movei mt_single_step,
#(1<<4) instruction by sending it through the debug
port. Issue WR_IBUF with payload (movei
mt_single_step, #(1<<4). This enables thread 4 to
run for only one instruction.

5. Restore the debugger assistant thread.
6. Restart all threads. Issue REL_MP.
7. While(1)
94 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
8. Read the content of the mp_dbg_active register:
Issue RD_MP_REG with payload 0x144. Issue
NOP.

9. If mp_dbg_active is zero, break; else go to Step 7.
10. Halt all threads: Issue HALT_MP.

5.3.3.15 Switching Threads
Restore the state for the current debugger assistant
thread. Set up the new thread as the debugger assistant
thread. Now read the register contents.

5.3.3.16 Waiting for Breakpoint Events
The state of the cpu can be determined by reading the
contents of the mt_dbg_active, mt_trap, mt_break and
RST_HALT_MP registers, and then analyzing the results.
Under normal running conditions mt_dbg_active will be
non-zero, mt_trap should be 0, mt_break should be 0,
and RST_HALT_MP bit 1 should be 0. mt_dbg_active
will go to zero if a single stepping sequence is being run.
It can also go to zero if a bkpt, #-1 instruction has been
executed by IP5K code. mt_break will be non-zero if any
thread executes a bkpt instruction. mt_trap will be non-
zero if trap events happen in the system. RST_HALT_MP
bit 1 is set if a software issued reset happens in the
system. If any of these events take place, control is
transferred back to the GDB front end.

5.3.3.17 Resetting the CPU
To reset the cpu, issue DBG_RST_REQ with payload 0
via the debug port. This will only reset the cpu. If
WR_RST_HALT_MP_EN with a non-zero payload was
issued prior to DBG_RST_REQ, then the cpu will reset
and stop at 0x60000000. If WR_RST_HALT_MP_EN was
never issued, then the cpu will start running immediately.
An OPEN command will have to be issued to the debug
port to make the debug port start accepting debug
commands.

5.3.3.18 Effect of Internal Resets
Most internally generated reset signals would not reset
the chip, even if DBG_RST_HALT_MP_EN is set.
Instead, a rst_dbg_halt_mp signal would be asserted for
one core clock cycle to indicate to the Debug Module that
one or more internally generated reset conditions have
occurred.

The Debug Module would then halt the processor. The
reasons for the reset would be available in the Reset
Reasons register (see Section 5.18.5 and Table 7-5).

The rst_dbg_halt_mp signal is generated by the following
equation:

rst_dbg_halt_mp <=
internal_resets & dbg_reset_halt_mp_en

The three resets that would cause normal chip reset
regardless the state of the DBG_RST_HALT_MP_EN
register are the power-on reset, the external reset, and
debug reset.

5.3.3.19 Erasing and Writing Flash
Ubicom creates a standalone piece of executable code
called Loader Kernel that can fit and run from the Off
Chip Memory. The Loader Kernel consists of the
following pieces of code:

1. PLL initialization code.
2. Other initialization code.
3. Main dispatch loop.
4. Code to calculate CRC for a given block of flash

memory.
5. Flash driver code.

The Loader Kernel is part of the Ubicom SDK and it built
for every project. The Loader Kernel is linked into the
project elf file as a section called .downloader.

The Loader Kernel consists of 2 threads: thread 1 moves
data in and out of the mailbox, and thread 2 is the flash
write and erase thread. The Loader Kernel uses a double
buffer scheme to speed up the download process. Thread
1 receives command requests and data via the mailbox
interface.

For a flash erase operation the host sends down an Erase
request command, start address, and length in bytes to
erase. Thread 1 receives this data, copies it into buffer 1,
wakes up thread 2, and then suspends itself, waiting for
thread 2 to wake it up. Thread 2 upon wake up picks up
the command from buffer 1, switches the command
receive buffer to buffer 2 and then wakes up thread 1. This
allows thread 1 to receive the next command while the
flash erase is in progress.

For flash write operations, the host sends a Flash write
command, start address, and number of bytes to write
followed by that many bytes of data. Thread 1 will receive
all this and copy it to the current write buffer. It then wakes
up thread 2 and suspends itself until thread 2 wakes it up.
Thread 2 will wake up and then switch the current write
buffer to the next available buffer and wake up thread 1 to
receive more requests. Thread 2 will then start moving the
data from the buffer to the proper location in flash.
www.ubicom.com 95

IP51xx Data Sheet – March 28, 2007
5.4 Data Cache
The Data Cache in the IP51xx has the size of 8 Kbytes. It
is 4-way associative and has a 32-byte cache line, which
means that there are four 2-Kbyte banks, each containing
64 lines of 32 bytes.

In the following discussions, CPU refers to the processor,
and IP5K refers to the IP51xx.

5.4.1 Data Cache Policies
CPU source and destination operands that reference off-
chip DDR memory use the D-Cache. The D-cache
supports simultaneous read and write operations with a
Write Queue. If a source operand is found in the cache
(hits the cache), data is returned immediately to the CPU.
If a target operation hits the cache, the data is written to
the cache, and that cache line is marked dirty. There is no
write-through to memory.

When a read request does not find data in the cache, the
thread that made the request is blocked while 32 bytes of
data is fetched from memory. A blocked thread does not
schedule any instructions. While the cache is fetching
data from off chip memory, it can still satisfy read requests
from other threads. If there are additional cache misses,
the cache will queue one miss per thread. While the cache
is fetching data from off-chip memory, writes are stored in
the write queue. If the write queue fills up, any thread that
writes to the cache will be blocked.

When there is a cache miss, the cache selects a 32-byte
cache line to replace using a pseudo-random policy

among the 4 lines associated with the set defined by the
address of the request. If the contents of that line are
marked dirty, the line is written back to memory before
being replaced.

5.4.2 Resetting the Data Cache
There are two sources that can reset (initialize) the
D-Cache:

• Hardware reset – a signal from the Reset block
• Software reset – caused by software setting a bit in

the D-Cache Control Register (DCCR)

Both types of reset cause the following:

• Invalidation of the entire D-Cache: Valid bits in all
entries of the Tag Array are cleared to 0.

• Initialization of all state machines
• Clearing of the MCB error flag

5.4.3 Data Cache Control Registers
Data Cache Control Registers (DCCR) are used to
provide direct access, read and write, to Data and Tag
arrays in the D-Cache. They also allow some specific
Cache operations, such as Invalidation and Flushing.

Registers and their relative addresses inside the OCP +
DCCR address space are listed in Table 5-3. All registers
are 32 bit. Not implemented bits (in DCSTAT and
DCCTRL) return 0’s when read.

For more detail, see Section 7.5.7.

Table 5-3 Data Cache Control Registers (DCCR)

Address Register
Name Description Read/

Write
32-Bit

Reset Value
Ox00 DCADDR D-Cache Address. Can be used as a direct address / index, or as

a logical address.
R/W xxxx xxxx

Ox04 DCRDD D-Cache Read Data. Contains data from Data or Tag arrays,
returned by executing a direct read command.

R/W xxxx xxxx

Ox08 DCWRD D-Cache Write Data. Contains data to be written to Data or Tag
arrays by a direct write command.

R/W xxxx xxxx

Ox0C DCSTAT D-Cache Status. R/W 0000 0000
Ox10 DCCTRL D-Cache Control. R/W 0000 0000
96 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.4.3.1 DCCTRL Register
The operation of the D-Cache is controlled by DCCTRL
register settings. The structure of the DCCTRL register is
shown below.

The functions of the bits in DCCTRL are as follows:

DCCTRL[31:8]

Reserved. Returns 0 when read.

DCCTRL[7:4]

OP: DCCR operation code. See Table 5-4.

These bits are cleared to 0 by core reset, or by
DCCTRL[2] = 1. Software can write any value to
DCCTRL[7:4], provided V is set to 0.

DCCTRL[3]

V: DCCR operation is Valid.

It is cleared to 0 by core reset, or by DCCTRL[2] = 1, or
upon completion of an operation specified in
DCCTRL[7:4] (OP), provided it was set to 1. Software can
write to DCCTRL[3] (V), provided V is set to 0.

DCCTRL[2]

R: D-Cache Reset.

If active (set to 1) it resets the D-Cache, as well as the
DCSTAT register and all bits in the DCCTRL register,

except itself. This bit is set to 0 by core reset. It can be set
to any value by software, regardless of the state of the
V-bit.

DCCTRL[1]

Reserved. Returns 0 when read.

DCCTRL[0]

D: DCCR operation Done.

This bit cannot be set by software; it is a read only bit. It is
cleared to 0 by core reset, or by DCCTRL[2] = 1, or on a
software write of 1 to DCCTRL[3] (V), provided V was set
to 0 prior to that. Bit D is set to 1 upon completion of an
operation specified in DCCTRL[7:4] (OP), provided that V
is set to 1.

5.4.3.2 DCSTAT Register
The DCSTAT register stores states associated with
D-Cache functionality, so they can be analyzed by
software. The structure of the DCSTAT register is shown
below:

DCSTAT[31:2]

Reserved. Returns 0 when read.

DCSTAT[1]

WIDLE: D-Cache write queue is idle.

This bit is cleared to 0 by core reset, or by DCCTRL[2] = 1.
It can be written by software (any value). When there is no
software write to DCSTAT, then it reflects the state of
fullness (or emptiness) of the D-Cache write queue, which
resides in the CPU2DC block of D-Cache.

DCSTAT[0]

MCBE: MCB bus Error during a transaction involving
D-Cache.

This bit is cleared to 0 by core reset, or by DCCTRL[2] = 1.

It can be written by software (any value). When there is no
software write to DCSTAT, then it reflects the state of
MCB error detection logic in the DC2MEM block of
D-Cache.

DCCTRL
0 OP V R 0 D

31 8 7 4 3 2 1 0

DCSTAT
0 WIDLE MCBE

31 2 1 0
www.ubicom.com 97

IP51xx Data Sheet – March 28, 2007
5.4.3.3 DCCTRL Operation Codes
Table 5-4 describes the operation codes that are defined
for DCCTRL[7:4].

Note 1: The content of the DCRDD register after
executing command (operation) Direct Read Tag is
shown below:

TAGADDR, TAGD, and TAGV reflect the content of the
addressed entry in TAG Array. INDEX = DCADDR[10:5]
and DIR_WAY = DCADDR[12:11] are stored back into
DCRDD from D-Cache just for information / confirmation.

Note 2: For command (operation) Direct Write Tag the
content of the DCWRD register is used as follows:

• Bits DCWRD[31:11] are written to the Address portion
of the addressed entry in the TAG Array.

• Bit DCWRD[1] is written to bit D, and bit DCWRD[0] is
written to bit V of the addressed entry in the TAG
Array.

Any code can be written from the CPU to DCADDR,
DCRDD, and DCWRD if DCCTRL[3] (V) is set to 0. If
DCCTRL[3] = 1, only the content of the DATA Array or the
TAG Array is allowed to be stored in DCRDD upon
completion of a Direct Read operation, but any software
update of DCRDD, as well as DCADDR and DCWRD is
blocked.

Table 5-4 DCCTRL Operation Codes
Operation Opcode Description

Direct Read DATA 0001 Read word of DATA Array from address specified in DCADDR[10:2] and bank
(way) - in DCADDR[12:11]. Put it into DCRDD.

Direct Read TAG 0010 Read content of TAG Array from address specified in DCADDR[10:5] and bank
(way) - in DCADDR[12:11]. Put it into DCRRD. See Note1.

Direct Write DATA 0011 Write word from DCWRD to DATA Array to address specified in DCADDR[10:2]
and bank (way) - in DCADDR[12:11].

Direct Write TAG 0100 Write data from DCWRD to TAG Array to address specified in DCADDR[10:5]
and bank (way) - in DCADDR[12:11]. See Note2.

Invalidate by Index 0101 Clear V-bit in entry of TAG Array, directly addressed using DCADDR[10:5] and
DCADDR[12:11].

Invalidate by Address 0110 Clear V-bit in entry of TAG Array, directly addressed by DCADDR[10:5] and
associatively by DCADDR[31:11] (to choose the way (bank)).

Flush by Index 0111 If D-bit in entry of TAG Array, directly addressed using DCADDR[10:5] and
DCADDR[12:11] is set to 1, write corresponding line back to DRAM if V-bit is set
to 1. Clear D-bit.

Flush and Invalidate by
Index

1000 If D-bit in entry of TAG Array, directly addressed using DCADDR[10:5] and
DCADDR[12:11] is set to 1, write corresponding line back to DRAM if V-bit is set
to 1. Clear D-bit, clear V-bit.

Flush by Address 1001 If D-bit in entry of TAG Array, directly addressed by DCADDR[10:5] and
associatively by DCADDR[31:11] (to choose the way) is set to 1, write
corresponding line back to DRAM if V-bit is set to 1. Clear D-bit.

Flush and Invalidate by
Address

1010 If D-bit in entry of TAG Array, directly addressed by DCADDR[10:5] and
associatively by DCADDR[31:11] (to choose the way) is set to 1, write
corresponding line back to DRAM if V-bit is set to 1. Clear D-bit, clear V-bit.

DCRDD
TAGADDR INDEX 0 DIR_WAY TAGD TAGV

31 11 10 5 4 3 2 1 0
98 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Software can read any of the DCCR registers at any time.

5.4.4 Notes to the D-Cache Programmer
• Since a D-Cache operation is initiated by setting

DCCTRL[3] to 1 (and thus blocking subsequent
update of any register until DCCTRL[3] = 0), software
should first write an address to DCADDR and data (if
needed) to DCWRD, and only then write to DCCTRL.
While DCCTRL[3] = 1, the DCCR block initiates the
request to D-Cache. If the operation was a read, read
data is put into the DCRDD register. When the D-
Cache finishes the operation, it indicates it with the
Done bit, which is used to set DCCTRL[0] to 1, and
clear DCCTRL[3] to 0. Then the request is de-
asserted and DCCR considers the operation
complete.

• It is the responsibility of software to provide a sole
allocation of DCCR to a thread until an operation it
has initiated is complete.

5.4.5 Tracking D-Cache Performance
A variety of statistics related to D-Cache performance can
be monitored using the programmable statistics counters
provided in the IP51xx. For details, see Section 5.6.

5.5 Instruction Cache
The Instruction Cache in the IP51xx has the size of 16
Kbytes. It is 4-way associative and has a 32-byte cache
line, which means that there are four 4-Kbytes banks,
each containing 128 sets of 32 bytes.

In the following discussions, CPU refers to the processor,
and IP5K refers to the IP51xx.

5.5.1 Instruction Cache Policies
CPU instruction fetches that reference off-chip DDR
memory use the I-Cache. If an instruction is found in the
cache (hits the cache), the instruction is returned
immediately to the CPU.

When a read request does not find the instruction in the
cache, the thread that made the request is blocked while
32 bytes of instruction is fetched from memory. A blocked
thread does not schedule any instructions. While the
cache is fetching an instruction from off-chip memory, it
can still satisfy read requests from other threads. If there
are additional cache misses, the cache will queue one
miss per thread.

When there is a cache miss, the cache selects a 32-byte
cache line to replace using a pseudo-random policy

among the 4 lines associated with the set defined by the
address of the request.

5.5.2 ICCR Requests and Invalidation
Instruction Cache Control Registers (ICCR) can cause six
different types of operations in I-Cache. Those include
directly addressed read and write from/to the Data Array
and the Tag Array, as well as invalidating a cache line
using its index or address.

An ICCR operation is encoded in a 4-bit opcode that
accompanies the ICCR request and address, as well as
write data (which is used in the case of direct writes).

An ICCR request is considered for arbitration only if the
I-Cache is not in a miss state, and in that case it has the
highest priority. While processing ICCR requests, the
I-Cache is considered busy for all other requests.

If there is a direct read, the I-Cache reads the word of the
Data Array or the entry of the Tag Array and returns it to
the ICCR together with read valid. If there is a direct write
type operation, I-Cache writes the data coming from ICCR
to the Data Array or the Tag Array. In both cases the
address from ICCR is used to directly address these
arrays (this is also called indexing).

Invalidation of a cache line is accomplished by clearing
the valid bit in the entry of the Tag Array. This entry can
by either directly addressed (invalidate by index
operation), or associatively addressed (invalidate by
address operation).

ICCR request remains active until the requested
operation is finished. The I-Cache indicates the end of an
ICCR operation by asserting the ICCR done flag, which
causes de-assertion of the ICCR request.

5.5.3 Resetting the Instruction Cache
There are two sources that can reset (initialize) the
I-Cache:

• Hardware reset – a signal from the Reset block
• Software reset – caused by software setting a bit in

the I-Cache Control Register (ICCR)

Both types of reset cause the following:

• Invalidation of the entire I-Cache: Valid bits in all
entries of the Tag Array are cleared to 0.

• Initialization of all state machines
• Clearing of the MCB error flag
www.ubicom.com 99

IP51xx Data Sheet – March 28, 2007
5.5.4 Instruction Cache Control Registers
Instruction Cache Control Registers (ICCR) are used to
provide direct access, read and write, to Data and Tag
arrays in the I-Cache. They also allow some specific
Cache operations, such as Invalidation.

Registers and their relative addresses inside the OCP +
ICCR address space are listed in Table 5-5. All registers
are 32 bit. Not implemented bits (in ICSTAT and ICCTRL)
return 0’s when read.

For more detail, see Section 7.5.6.

5.5.4.1 ICCTRL Register
The operation of the I-Cache is controlled by ICCTRL
register settings. The structure of the ICCTRL register is
shown below.

The functions of the bits in ICCTRL are as follows:

ICCTRL[31:8]

Reserved. Returns 0 when read.

ICCTRL[7:4]

OP: ICCR operation code. See Table 5-6.

These bits are cleared to 0 by core reset, or by
ICCTRL[2] = 1. Software can write any value to
ICCTRL[7:4], provided V is set to 0.

ICCTRL[3]

V: ICCR operation is Valid.

It is cleared to 0 by core reset, or by ICCTRL[2] = 1, or
upon completion of an operation specified in ICCTRL[7:4]
(OP), provided it was set to 1. Software can write to
ICCTRL[3] (V), provided V is set to 0.

ICCTRL[2]

R: I-Cache Reset.

If active (set to 1) it resets the I-Cache, as well as the
ICSTAT register and all bits in the ICCTRL register,
except itself. This bit is set to 0 by core reset. It can be set
to any value by software, regardless of the state of the
V-bit.

ICCTRL[1]

Reserved. Returns 0 when read.

ICCTRL[0]

D: ICCR operation Done.

This bit cannot be set by software; it is a read only bit. It is
cleared to 0 by core reset, or by ICCTRL[2] = 1, or on a
software write of 1 to ICCTRL[3] (V), provided V was set
to 0 prior to that. Bit D is set to 1 upon completion of an
operation specified in ICCTRL[7:4] (OP), provided that V
is set to 1.

Table 5-5 Instruction Cache Control Registers (ICCR)

Address Register
Name Description Read/

Write
32-Bit

Reset Value
Ox00 ICADDR I-Cache Address. Can be used as a direct address / index, or as a

logical address.
R/W xxxx xxxx

Ox04 ICRDD I-Cache Read Data. Contains data from Data or Tag arrays,
returned by executing a direct read command.

R/W xxxx xxxx

Ox08 ICWRD I-Cache Write Data. Contains data to be written to Data or Tag
arrays by a direct write command.

R/W xxxx xxxx

Ox0C ICSTAT I-Cache Status. R/W 0000 0000
Ox10 ICCTRL I-Cache Control. R/W 0000 0000

ICCTRL
0 OP V R 0 D

31 8 7 4 3 2 1 0
100 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.5.4.2 ICSTAT Register
The ICSTAT register stores states associated with
I-Cache functionality, so they can be analyzed by

software. The structure of the ICSTAT register is shown
below:

DCSTAT[31:1]

Reserved. Returns 0 when read.

DCSTAT[0]

MCBE: MCB bus Error during a transaction involving
I-Cache.

This bit is cleared to 0 by core reset, or by ICCTRL[2] = 1.

It can be written by software (any value). When there is no
software write to ICSTAT, then it reflects the state of MCB
error detection logic in the IC2MEM block of I-Cache.

5.5.4.3 ICCTRL Operation Codes
Table 5-6 describes the operation codes that are defined
for ICCTRL[7:4].

Note 1: The content of the ICRDD register after executing
command (operation) Direct Read Tag is shown below:

TAGADDR and TAGV reflect the content of the
addressed entry in the TAG Array. INDEX =
ICADDR[11:5] and DIR_WAY = ICADDR[13:12] are
stored back into ICRDD from I-Cache just for information
/ confirmation.

Note 2: For command (operation) Direct Write Tag the
content of the ICWRD register is used as follows:

• Bits ICWRD[31:12] are written to the Address portion
of the addressed entry in the TAG Array.

• Bit ICWRD[0] is written to bit V of the addressed entry
in the TAG Array.

Any code can be written from the CPU to ICADDR,
ICRDD, and ICWRD if ICCTRL[3] (V) is set to 0. If
ICCTRL[3] = 1, only the content of the DATA Array or the
TAG Array is allowed to be stored in ICRDD upon
completion of a Direct Read operation, but any software
update of ICRDD, as well as ICADDR and ICWRD is
blocked.

Software can read any of the ICCR registers at any time.

DCSTAT
0 MCBE

31 1 0

Table 5-6 ICCTRL Operation Codes
Operation Opcode Description

Direct Read DATA 0001 Read word of DATA Array from address specified in ICADDR[11:2] and bank
(way) - in ICADDR[13:12]. Put it into ICRDD.

Direct Read TAG 0010 Read content of TAG Array from address specified in ICADDR[11:5] and bank
(way) - in ICADDR[13:12]. Put it into ICRRD. See Note1.

Direct Write DATA 0011 Write word from ICWRD to DATA Array to address specified in ICADDR[11:2]
and bank (way) - in DCADDR[13:12].

Direct Write TAG 0100 Write data from ICWRD to TAG Array to address specified in ICADDR[11:5] and
bank (way) - in ICADDR[13:12]. See Note2.

Invalidate by Index 0101 Clear V-bit in entry of TAG Array, directly addressed using ICADDR[11:5] and
ICADDR[13:12].

Invalidate by Address 0110 Clear V-bit in entry of TAG Array, directly addressed by ICADDR[11:5] and
associatively by ICADDR[31:12] (to choose the way (bank)).

ICRDD
TAGADDR INDEX 0 DIR_WAY 0 TAGV

31 12 11 5 4 3 2 1 0
www.ubicom.com 101

IP51xx Data Sheet – March 28, 2007
5.5.5 Notes to the I-Cache Programmer
• Since an I-Cache operation is initiated by setting

ICCTRL[3] to 1 (and thus blocking subsequent update
of any register until ICCTRL[3] = 0), software should
first write an address to ICADDR and data (if needed)
to ICWRD, and only then write to ICCTRL. While
ICCTRL[3] = 1, the ICCR block initiates the request to
I-Cache. If the operation was a read, read data is put
into the ICRDD register. When the I-Cache finishes
the operation, it indicates it with the Done bit, which is
used to set ICCTRL[0] to 1, and clear ICCTRL[3] to 0.
Then the request is de-asserted and ICCR considers
the operation complete.

It is the responsibility of software to provide a sole
allocation of ICCR to a thread until an operation it has
initiated is complete.

5.5.6 Tracking I-Cache Performance
A variety of statistics related to I-Cache performance can
be monitored using the programmable statistics counters
provided in the IP51xx. For details, see Section 5.6.

5.6 Statistics Counters
There are four 32-bit statistics counters that can be used
to monitor a variety of performance-related events within
the IP51xx. Each of the four counters can be individually
configured to monitor a specific kind of event. Table 7-13
shows the four counters and their corresponding
configuration registers. Table 7-14 list the events that can
be selected for tracking by any of these four counters.
Once a counter is set up to monitor a specific event, the
counter is incremented once for every clock during which
the chosen event occurs. The counters are 32-bit wide.

5.6.1 Notes to the Statistics Counters
Programmer

• Since counters cannot be reset by software (they are
read only), the starting value needs to be stored prior
to the measurement session.

• At 350-MHz CPU clock frequency, a 32-bit register
wraps in about 12 seconds. It is recommended that
the sampling interval of the counters be less then this
number – for example, 4 seconds.

• If there is a write to a configuration register followed
by a read from the corresponding counter, there
should be at least 11 cycles separating the two
instructions. This gap is necessary for the new
configuration to take effect.

5.7 Flash Controller Programming Model
When reading this section, please refer to Section 6.3 for
a general discussion of the flash controller and its external
interface signals. Refer to Section 7.7.1 for the register
definitions for the flash controller (FC) on Port A. Note that
the flash controller does not use non-blocking registers for
configuration of the flash device. Instead, it uses SPI
transactions to configure the flash device directly through
the SPI interface on Port A.

The port registers provide user control for the flash
controller itself, and a secondary transaction interface for
the processor to communicate with the external serial
flash device directly. See Table 5-7 to get an overview of
how the port registers map to the control and transaction
interfaces for the flash controller (for a detailed mapping,
see Section 7.7.1).

5.7.1 FC Initialization
The FC requires no initialization at boot time to read cache
lines from a supported external FLASH device. This is a
requirement, as the external FLASH device is the boot
device for the chip.

Specifically, the FC_CLK_WIDTH parameter defaults to
40 core clock cycles. This results in the SPI clock being
driven at a low enough frequency to execute the basic
read command for all supported devices. The
CACHE_RD_CMD parameter defaults to 0x03, which is
the common basic read command for all supported
FLASH devices.

5.7.2 Cache Reads
This is a read-only interface. Writes to the external flash
device must be done by the processor through the port
register transaction interface. Cache misses to the flash
address space result in the flash controller automatically
fetching the corresponding cache line from the external
flash and returning it to the requesting cache.

Table 5-7 Port Register Overview
Port Register Mapping to FC Control / Status

Interrupt Status FC transaction done
Interrupt Set FC start transaction
Function Control 0 Configuration for FC
Function Control 1
Function Control 2

Transaction descriptor for a
transaction to external flash device

Function Status 0 Processor / Cache transaction
activity status

Function Status 1 Read data from external flash (for
processor transactions)
102 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
The flash controller fetches an entire 32-byte cache line
before forwarding it to the appropriate Cache.

By default, the SPI Read command used is the basic
Read supported by all devices. For devices that support
an expedited read command and format, the processor
must program the corresponding read command
CACHE_RD_CMD and the clock divider value
FC_CLK_WIDTH (to be used to generate the SPI clock
from the core clock) into Function Control 0.

It is up to software to program these fields to enable high
speed reads from the cache interface.

The processor code to set this up might look something
like this:

1. Software sets FC_CACHE_LOCKOUT = 1 in
Function Control 0.

2. FC clears CACHE_ACTIVE in Function Status 0 at
the end of a pending cache transfer.

3. Software re-programs the parameters:
a. CACHE_RD_CMD = FAST READ
b. CACHE_DMY_CT = 1
c. FC_CLK_WIDTH = SPI clock divider value

4. Software clears FC_CACHE_LOCKOUT.

5.7.3 Processor Read/Write/Erase
Interface to External Flash

The processor uses the port register interface to
Read/Write/Erase the external flash device. Reads
through this interface are limited to 4 bytes.

The external flash SPI bus takes several flavors of
command formats, which are transmitted serially on the
SPI bus. These are shown in Table 5-8.

In order to support these variants, the flash controller
must be aware of the command format. It is up to software
to provide this information, along with the address and
command to be transmitted to the flash device by the
controller.

The processor writes the SPI bus command, address,
data, and some control information to the flash controller
data registers. Function Control 1 and 2 define the type
and structure of the transaction to be transmitted across
the SPI bus. These two registers are essentially a
transaction descriptor for communication with an external
flash device over the SPI interface. Any data that is read
back from the external flash device is available in
Function Status 1. It is up to software to know how many
bytes are valid, based on the FCX_DATA_CT field
specified in Function Control 1. Any data that is to be
written to the external flash device is written to the TX
FIFO.

When transactions are completed, the flash controller
sets an interrupt bit in the Port A Flash Interrupt Status
register.

5.7.4 FC_CMD Process
FC_CMD issues a command only to the SPI interface.
(e.g., flash device WREN command).

The processor sends a command only instruction to the
flash device as follows:

1. Software must ensure that the flash controller
function is selected for this port (default is flash
controller selected).

2. Software must ensure that the flash controller is
enabled by setting the FC_EN bit in Function
Control 0 (default behavior).

3. Software writes the Function Control registers as
follows:
a. Function Control 1: FCX_INST = FC_CMD
b. Function Control 1: FCX_DATA_CT = 0
c. Function Control 1: FCX_DMY_CT= 0
d. Function Control 1: FCX_ADDR_EXISTS = 0
e. Function Control 2: FCX_CMD = <command>
f. Function Control 2: FCX_ADDR = 0

4. Software initiates the transaction by setting
FC_START in the Interrupt Set register.

5. The FC processes the transaction and puts the
command on the SPI bus.

6. FC sets FC_DONE in the Interrupt Status register to
indicate transaction completion.

5.7.5 FC_READ Process
FC_READ issues a command and expects read data on
the SPI data input pin (SI).

The FC_READ instruction can read 1 to 4 bytes of data.
The processor specifies the number of bytes in the
FCX_DATA_CT field in Function Control 1.

Table 5-8 Command Formats for External Flash
SPI Command Format FCX_INST Encoding

(command) FC_CMD 2’b00
(command)(address)(write data)
(command)(write data)

FC_WRITE 2’b01

(command)(read data)
(command)(address)(read data)
(command)(address)(dummy

byte)(read data)

FC_READ 2’b10
www.ubicom.com 103

IP51xx Data Sheet – March 28, 2007
The processor reads data from the flash device as
follows:

1. Software must ensure that the flash controller
function is selected for this port (default is flash
controller selected).

2. Software must ensure that the flash controller is
enabled by setting the FC_EN bit in Function
Control 0 (default behavior).

3. Software must set up the Function Control registers
as follows:
a. Function Control 1: FCX_INST = FC_READ
b. Function Control 1: FCX_DATA_CT

= <byte count>
c. Function Control 1: FCX_DMY_CT

= <dummy byte count>
d. Function Control 1: FCX_ADDR_EXISTS = 1, if an
address field exists.
e. Function Control 2: FCX_CMD

= <read command>
f. Function Control 2: FCX_ADDR = <addr>

4. Software initiates the transaction by setting
FC_START in the Interrupt Set register.

5. FC clears the read data (FCX_RDATA in Function
Status 1) from the previous read transaction.

6. FC processes the transaction and puts the
command, address, and dummy bytes onto the SPI
bus.

7. FC shifts read data into FCX_RDATA in Function
Status 1 (until the transaction data byte count is
reached) with the last data bit in bit 0 (right
justified).

8. FC sets FC_DONE in the Interrupt Status register to
indicate transaction completion.

9. Software reads data from FCX_RDATA in Function
Status 1.

5.7.6 FC_WRITE Process
FC_WRITE issues a command and puts write data on the
SPI data output pin (SO).

The FC_WRITE instruction can write 1 to 512 bytes of
data to the flash device (although current devices only
support up to 256). The external flash device must
support continuous writes of more than 1 byte. It is up to
software to ensure that this is true.

Note: FC writes greater than 4 bytes must be done on
word boundaries (4 bytes at a time). FC writes of fewer
than four bytes are all right: 1, 2, 3, and 4 bytes are all
valid data count sizes.

The processor writes data to the flash device as follows:

1. Software must ensure that the flash controller
function is selected for this port (default is flash
controller selected).

2. Software must ensure that the flash controller is
enabled by setting the FC_EN bit in Function
Control 0 (default behavior).

3. Software must set the FC_CACHE_LOCKOUT bit in
Function Control 0 before any write operation to the
external flash device.

4. FC will clear CACHE_ACTIVE (in Function Status
0) at the end of a pending cache transfer.

5. Software must set up the Function Control registers
as follows:
a. Function Control 1: FCX_INST = FC_WRITE
b. Function Control 1: FCX_DATA_CT

= <byte count>
c. Function Control 1: FCX_DMY_CT =0
d. Function Control 1: FCX_ADDR_EXISTS = 1, if an
address field exists.
e. Function Control 2: FCX_CMD

= <write command>
f. Function Control 2: FCX_ADDR = <addr>

6. Software pushes write data, 4 bytes at a time, into
the TX FIFO. It is up to software to keep track of the
FIFO underflow.

7. Software initiates the transaction by setting
FC_START in the Interrupt Set register.

8. FC processes the transaction and puts the
command, address, and write data onto the SPI
bus. The data byte count dictates how many bytes
of write data are written to the flash device. It is up
to software to make sure that the TX FIFO does not
underflow for the specified number of bytes in the
FCX_DATA_CT field.

9. FC sets FC_DONE in the Interrupt Status register to
indicate transaction completion.

Note: At this point, the data has been written to
the flash device over the SPI bus. The data has
not been written into the flash array yet.
FC_DONE means only that the flash controller
transaction is complete. It does not mean that the
data is successfully written into the flash device.
It is up to software to poll the flash device status
register periodically to tell when the write data has
been successfully written into the device.

10. Software must clear FC_CACHE_LOCKOUT when
the device status register shows that the flash array
has been successfully written.
104 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Transaction-Level View of Software Writes to Flash

1. Software must ensure that the Flash controller
function is selected for this port.

2. Software must enable the low-level interface by
ensuring that FC_EN is set.

3. Software must set the FC_CACHE_LOCKOUT bit
to ensure that the port-register interface owns the
device.

4. Software issues FC_CMD transaction – WREN
5. Software issues FC_WRITE transaction – writes

data to device.
6. Software periodically issues FC_READ transaction

– RDSR
7. Software checks read data register to see if write

has been successful.
8. If (successful write), done!, else repeat from #6.
9. Software must clear the FC_CACHE_LOCKOUT bit

to relinquish the interface.

5.7.7 SPI Interface Clocking
The clock divider generates the External SPI interface
clock signal (SCK) for the external flash device (core clock
edges are counted and used to generate the SPI clock).

SCK is guaranteed not to change frequency in the middle
of an SPI transaction. The default frequency is set to 40
core clock cycles, but is programmed some time after
reset by writing a value to FC_CLK_WIDTH in Function
Control 0. This value is the total number of core clock
cycles per SPI clock cycle. The programmed number
must be even. SCK is guaranteed to have a 50% duty
cycle.

5.7.8 System / Function Reset
After system reset (rst_core) the FC will come up with the
following default parameters in Function Control 0:

• CACHE_RD_CMD = 0x03 (Common read command
for all supported flashes)

• CACHE_DMY_CT = 0 (0x0)
• FC_CLK_WIDTH = 40 core clock cycles (0x28)
• FE_CE_WAIT = 40 core clock cycles (0x28)

After reset is deasserted, the first I-Cache miss triggers an
FC request to get the first cache line from the flash. It will
read the data and respond to the cache request. The initial
SPI frequency is guaranteed to be less than 10 MHz (the
slowest read frequency for all supported devices).

At some point later, the PLL will be started, and the core
clock frequency will go up to speed, resulting in the SPI
frequency being increased. It must be guaranteed that the
SPI clock frequency does not exceed the minimum
common read frequency for supported flash devices (10

MHz) during this process, until the FC is reprogrammed to
use the high-speed read command and format particular
to the flash device being used. The software driver is
responsible for programming these parameters into the
Function Control registers.

5.7.9 FC Function De-Selection
De-asserting FC_EN in Function Control 0 will simply
mean that upon completion of any current transaction on
the SPI bus, neither the cache nor the processor will be
able to get access to the SPI interface. Arbitration is
inhibited. However, the flash controller will continue to
queue up read requests from the caches, to be processed
when the FC is re-enabled.

The I/O Port function select is tied to the FC_EN bit. If the
function is de-selected, the enable bit driven to the FC
module will go to its inactive state.

It is a requirement that if the FC is de-selected, the SPI
chip select signal (CE_N) should remain driven to a state
that ensures that the external flash device remains de-
selected. CE_N must be driven constantly HIGH (de-
selecting the flash). This pin can NOT be shared with any
other device connected to the port.

The procedure for de-selecting the FC is as follows:

1. Clear the FC_EN bit in Function Control 0 (prohibiting
arbitration).

2. Poll the Port A Flash Interrupt Status register to check
that any pending transactions are done on the SPI
interface.

3. Set the port-register GPIO enable and output register to
drive the CE_N pin HIGH on the SPI interface.

4. De-select the function by changing the Function Select
register to GPIO.

5.8 DDR SDRAM Programming Model
When reading this section, please refer to Section 6.4 for
a general discussion of the DDR SDRAM controller and
its external interface signals. Refer to Section 7.12.1 for
the register definitions for the DDR SDRAM controller on
Port G.

In the following sections, DDR refers to DDR SDRAM.

This section details high level programming information
required to enable the DDR block. The DDR block itself is
composed of a number of subsystems, specifically:

• DDR Clock Subsystem
This subsystem consists of a pair of PLLs that are
responsible for the generation of a DDR clock for both
www.ubicom.com 105

IP51xx Data Sheet – March 28, 2007
the DDR associated hardware and its external
interface. A dedicated PLL generates the DDR clock.
This clock is used to clock the DDR controller as well
as the external DDR interface. Additionally, a Deskew
PLL deskews the generated clock on the external
DDR bus in relation to the internal DDR clock. Both
PLLs are configured via registers in the general
configuration section of the On-chip Peripheral (OCP)
register space (indirect register space).

• DDR I/O Calibrator Module
The DDR I/Os contain circuitry that control output
impedance and on-die termination. The circuitry is
enabled only when the I/Os are configured in the
DDR2 mode of operation. The Calibrator subsystem
is a module that dynamically calibrates the
termination setting of these I/Os in order to achieve an
optimal impedance characteristic on the DDR bus.
The configuration registers for the DDR I/O Calibrator
are located in the general configuration section of the
On-chip Peripheral (OCP) register space (indirect
register space).

• DDR Port I/Os
The DDR I/Os are situated across Port G and Port H.
These ports must be configured, in order to get the
DDR hardware to utilize these I/Os. Otherwise all
DDR transactions will be dropped. The corresponding
registers to program the ports are located in the Port
G and Port H I/O register space.

• DDR Controller Module
The DDR controller subsystem manages all DDR
operations. The configuration registers are located
in the Port G I/O register space.

The sequence for enabling the DDR subsystem is as
follows:

1. Enable the DDR clock subsystem:
(a) Configure and enable the DDR clock PLL in order
to generate a clock with the desired frequency.
(b) Configure and enable the DDR deskew PLL.

2. Set up the DDR I/O Calibrator to execute a
calibration sequence.
This is done only when the interface is configured for
DDR2 mode.

3. Configure Port G and/or Port H for DDR operation.
4. Configure the DDR controller for a specific memory

device and activate it.

Once these programming sequences are accomplished,
the DDR subsystem is active and the external DDR
memory is accessible.

5.8.1 Enabling the DDR clock
The DDR clock must be enabled and stable before the
rest of the DDR subsystem is enabled. This consists of
configuring and setting up the DDR clock PLL and the
DDR deskew PLL.

Both PLLs are configured via registers in the general
configuration section of the On-chip Peripheral (OCP)
register space (indirect register space). Refer to Section
5.16 section for a recommended method of enabling the
DDR clock.

The maximum value of the DDR clock for IP51xx is 200
MHz. The minimum value of the DDR clock for IP51xx is
120 MHz.

5.8.2 Disabling the DDR clock
When the DDR is not being used, the DDR clock can be
disabled in order to lower power consumption. This can
be accomplished by putting both the DDR PLL and DDR
Deskew PLL into power down mode. Once this is done, all
data in the DDR memory device will be lost. Re-enabling
the DDR subsystem requires the entire programming
sequence to be re-initiated.

5.8.3 Calibrating the DDR I/Os
A dynamic calibration scheme is used to calibrate the
output impedance as well as the on-die input termination
when the DDR I/O is configured for DDR2 mode.
Calibration is not necessary, and has no effect, when Port
G and Port H are configured for DDR1 operation. The
IP51xx has two Calibration controllers. CAL Low is
connected to Port G, and CAL High is connected to Port
H. CAL Low is the master calibration controller and is
connected to an external calibration resistor. The resistor
value for DDR2 is specified at 240 Ohms.

The configuration registers for the DDR I/O Calibrator are
located in the general configuration section of the On-chip
Peripheral (OCP) register space (indirect register space).

The calibration sequence will be executed on the CAL
Low controller. The calibration value generated by the
calibration sequence will be written to the CAL Low and
CAL High when the calibration sequence is complete. The
DDR clock is used as the source clock for the calibrator,
and must operate at 300 MHz or less to avoid errors due
to the speed of the circuit.

The proposed calibration sequence is as follows:

1. Reset and initialize CAL Low and CAL High. After
power-on reset the calibration circuit should already
be initialized, but it is recommended to repeat the
sequence. To reset and initialize the controller,
106 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
write a 1 to the CAL_RESET_LOW bit and the
CAL_RESET_HIGH bit of the CALCTRL register for
the duration of 4 clk_ddr clock cycles. This will
guarantee that the CAL_RESET signal in the
clk_ddr domain is high for the specified 2 core clock
cycles.

2. Read the CAL_DONE_LOW and CAL_FAULT_
LOW values of the CALSTATUS register and verify
that they are 0. It will take a minimum of 3 clk_ddr
clock cycles and 2 clk_core cycles for the
CAL_DONE_LOW and CAL_FAULT_LOW bits to
be cleared.

3. Write a 1 to the CAL_START_LOW bit of the
CALCTRL register. This will create a toggle and a
one clock pulse of the CAL_START input of the
calibration controller.

4. Poll the CAL_DONE_LOW bit for the calibration
process to complete. The maximum calibration time
is 5000 clk_ddr cycles. The minimum time is 1500
clk_ddr cycles.

5. Verify that the calibration circuit was able to match
the external resister. After the CAL_DONE_LOW bit
is set check the status of the CALFAULT_LOW bit.
If the CAL_FAULT_LOW bit is set, the calibration
controller failed to calibrate the I/O.

6. Set IMP_SET_UPDATE_LOW to 0 and IMP_SET_
UPDATE_HIGH to 1.

7. To update Port H, copy the value of IMP_PU_OUT_
LOW to IMP_SET_PU_HIGH and IMP_PD_OUT_
LOW to IMP_SET_PD_HIGH.

8. Write a 1 to the IMP_UPDATE_LOW and
IMP_UPDATE_HIGH register field. This will update
the I/Os with the calibration value generated by the
state machine. Do not write IMP_UPDATE_HIGH if
you do not want to calibrate Port H.

9. Do not change the value of IMP_SET_UPDATE_
LOW and IMP_SET_UPDATE_HIGH for a minimum
of 5 clk_ddr cycles.

Once the pull-down cycle is complete the CAL_DONE
signal will be asserted for 200 core clock cycles.

The following sequence can be used to write a calibration
value to Port G:

1. Make sure that a calibration sequence has
completed and that the CAL_RESET register bit is
a 0.

2. Set the IMP_SET_UPDATE_LOW register bit to 1,
and the values that you wish to program into the
I/Os in the IMP_SET_PU_LOW and IMP_SET_PD_
LOW register fields.

3. Write a 1 to the IMP_UPDATE_LOW register field.

4. Wait a minimum of 5 clk_ddr cycles before changing
IMP_SET_UPDATE_LOW, IMP_SET_PU_LOW, and

IMP_SET_PD_LOW. The Calibration will have been
written to the Port G DDR2 I/Os.

For Port H follow the same sequence, but set the HIGH
register fields in the CALCTRL register.

5.8.4 Configuring the I/O Port for DDR
Operation

In order to be able to configure the DDR controller, Port G
function select has to be set for DDR operation. This
action also configures Port G I/O’s to be used as the
external DDR interface. Port G implements only the DDR
address and command, as well as the lower byte of the
DDR bus. Port H implements the upper byte of the DDR
bus. Consequently, Port H function select also must be
set for DDR operation if the IP51xx is interfacing to a
memory device with a 16 bit bus.

5.8.5 Initializing the DDR Controller
Registers that control the DDR controller are mapped to
the Port G I/O map when it’s function select is set for DDR
operation.

The non-blocking region of Port G consists of the registers
that control some aspects of the DDR controller hardware,
such as a watermark level for the read response FIFO that
allows software to optimize for read response latency.
The initial level of interrupt management registers are also
available there. Additionally, the whole DDR controller
hardware can be reset via the Port G function register.

The blocking region of Port G maps most of the
configuration registers of the DDR controller. These
configuration registers are used for setting up the
controller in order to support the type (DDR1 or DDR2),
address mapping, and timing of a DDR memory device to
which the IP51xx is interfacing.

The following programming sequence is a recommended
method for initializing the controller:

1. Configure Port G function select for DDR operation.
Additionally, configure Port H function select for
DDR operation as well, if interfacing to a DDR
memory with a 16-bit bus. Wait at least 4 core
clocks for these changes to actually take effect.

2. Assert DDR controller reset via Port G function
reset.

3. De-assert DDR controller reset via Port G function
reset. Wait at least 4 core clocks for the reset to
actually take effect.

4. If desired, configure the DDR read response
watermark via the Port G function control register.
www.ubicom.com 107

IP51xx Data Sheet – March 28, 2007
5. Configure the DDR controller via the Port G
blocking register space in order to support the width
of the external DDR bus, the type (DDR1 or DDR2),
timing, and address map of the memory device.

6. Signal the DDR controller to become active.
7. Wait for the DDR controller master DLL to lock. This

can be done by either setting up the appropriate
interrupt or polling on the interrupt status bit.

Once this is done, the DDR controller will initiate the
proper bus initialization sequence required to get the
external DDR memory into an operational mode. After
this, the controller can now access the memory. It will also
ensure that the memory remains refreshed accordingly.

5.8.6 Training the DDR DLLs (Delay
Locked Loops)

The DDR controller implements a pair of DLLs that control
the timing of the DDR data bus for write transactions.
Specifically, one DLL controls the placement of the data
signals (DQ) and the other controls the placement of the
data strobes (DQS). In both cases, they are controlled in
relation to the DDR clock. In addition to this, the controller
also implements another pair of DLLs that manage read
response data capture. This pair skews the incoming data
strobes (DQS) in relation to the data signals (DQ) in order
to correctly latch the read responses off the bus. One DLL
is used on the upper byte and the other is used on the
lower byte.

These DLLs need to be programmed correctly in order to
facilitate functional transactions on the DDR bus. Ideally,
a set of DLL settings should result in the optimal timing
margins on the DDR interface for both read and write
operations. In the case of DDR1, there is sufficient timing
margin on the DDR interface, that one set of DLL settings
is probably sufficient to support any DDR memory across
all legal process, voltage, and temperature (PVT)
settings. However, this is not the case for DDR2. The
timing characteristics differ radically enough between all
possible PVT conditions, that a single DLL setting will not
function reliably in some cases. Process corner and
voltage are considered to have the largest effect on the
timing margins. Temperature has a minimal effect in
relation to either process corner or voltage.

As mentioned before, it is possible to locate a set of DDR1
DLL settings that will work across all process corners,
voltage, and temperature (PVT) settings. This is not
possible for DDR2. It is possible, however, to find a set of
DLL settings that will work fine across some PVT
conditions and function marginally across others. The
settings are probably sub-optimal for some conditions,
and the interface is functional to the degree that it will fail
after repeated usage over a sustained period of time. This

characteristic is important, because it allows software to
implement a simple DLL training algorithm that will refine
that initial set of DLL configurations to one that is tuned for
the existing PVT condition.

The DLLs will have to be trained independently in pairs —
one pair for read operations and the other pair for write
operations. In either case, DDR memory accesses are
utilized to discover the possible working range of the DLL
pairs. Starting with a setting that at least works marginally,
the parameters are increased and decreased until a DDR
transaction can no longer function. The optimal setting for
each DLL is located in the middle of the this working
range. For read operations, the DLL pairs are completely
independent of one another and can therefore be trained
independently. Care must be taken however to mask out
the non-relevant data bytes in the read response when
training one of these DLLs. For example, when training
the DLL associated with read responses for the lower
byte, data that corresponds with the upper byte should be
masked out. For write operations, the DLL pairs are
dependent and cannot be trained independently.
Although each DLL independently controls the placement
of either the data signals (DQ) or the data strobe (DQS),
the combination of these two placements affects the
overall write interface timing. The proposed algorithm can
be simplified by assuming a fixed phase relationship
between the placement of the data signals (DQ) and the
data strobes (DQS). Then the working range of this DLL
pair can be determined for that fixed phase relationship.
The IP51xx characterization data suggest that a phase
relationship of 30% should be used.

In regard to the DDR accesses, all transactions can be
addressed to the same DDR location. This is because the
DLLs do not determine the timing of the address signals.
Consider also that in order to qualify any particular set of
DLL settings, minimally a pair of DDR transactions (such
as a write followed by a read of the same address) is
required. Obviously the algorithm would tune more
effectively if the number of transaction pairs were
increased (either by testing a larger segment of memory
and/or testing a particular location multiple times).
Unfortunately, this will happen at the expense of
timeliness. Characterization data suggest that the
transaction size can be limited to a single word and that
one transactions pair is sufficient to qualify a set of DLL
settings. Different data patterns present the DDR
interface with a different level of electrical stress. The
algorithm, which is described in more detail below,
assumes that a pattern that is randomized is good
enough.

The following example describes the write and read DLL
training algorithm using pseudo code:
108 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
//
// Write DLL training algorithm
//

// Set the initial write_dqs_shift DLL parameter
// Controls the data signals (DQ) placement within the write data eye
int wdll_dq_val = x1 ; // initial parameter for outbound write DQ placement
write_ddr_reg (WRITE_DQS_SHIFT, wdll_dq_val);

// Set the initial dqs_out_shift DLL parameter
// Controls the data strobes (DQS) placement within the write data eye
int wdll_dqs_val = x1+(0.30*128) ; // initial parameter for outbound write DQS placement
write_ddr_reg (DQS_OUT_SHIFT, wdll_dqs_val);

// Initialize DDR memory
int ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

// Locate the maximum range of the DLL
while (read_ddr_mem (ADDR) == ddr_data) {

write_ddr_reg (WRITE_DQS_SHIFT, wdll_dq_val++);
write_ddr_reg (DQS_OUT_SHIFT, wdll_dqs_val++);
ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

}
int max_wdll_dq_val = wdll_dq_val;
int max_wdll_dqs_val = wdll_dqs_val;

// Set the initial write_dqs_shift DLL parameter
// Controls the data signals (DQ) placement within the write data eye
wdll_dq_val = x1 ; // initial parameter for outbound write DQ placement
write_ddr_reg (WRITE_DQS_SHIFT, wdll_dq_val);

// Set the initial dqs_out_shift DLL parameter
// Controls the data strobes (DQS) placement within the write data eye
wdll_dqs_val = x1+(0.30*128) ; // initial parameter for outbound write DQS placement
write_ddr_reg (DQS_OUT_SHIFT, wdll_dqs_val);

// Initialize DDR memory
int ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

// Locate the minimum range of the DLL
while (read_ddr_mem (ADDR) == ddr_data){

write_ddr_reg (WRITE_DQS_SHIFT, wdll_dq_val--);
write_ddr_reg (DQS_OUT_SHIFT, wdll_dqs_val--);
ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

}
int min_wdll_dq_val = wdll_dq_val;
int min_wdll_dqs_val = wdll_dqs_val;

int optimal_wdll_dq_val = (max_wdll_dq_val + min_wdll_dq_val) / 2;
int optimal_wdll_dqs_val = (max_wdll_dqs_val + min_wdll_dqs_val) / 2;
write_ddr_reg (WRITE_DQS_SHIFT, optimal_wdll_dq_val);
write_ddr_reg (DQS_OUT_SHIFT, optimal_wdll_dq_val);
www.ubicom.com 109

IP51xx Data Sheet – March 28, 2007
//
// Read DLL training algorithm
//

DDR_LO_BYTE_MASK = 0x00ff00ff
DDR_HI_BYTE_MASK = 0xff00ff00

// Set the initial read_dqs0_delay DLL parameter
// Controls the data strobes (DQS) placement within the read data eye
int rdll_dqs0_val = x1 ; // initial parameter for inbound read DQS_0 (lower byte) placement
write_ddr_reg (DQS_DELAY_0, rdll_dqs0_val);

// Initialize DDR memory
int ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

// Locate the maximum range of the DLL_0 DLL
while ((read_ddr_mem (ADDR) && DDR_LO_BYTE_MASK) == ddr_data) {

write_ddr_reg (DQS_DELAY_0, rdll_dqs0_val++);
ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

}
int max_rdll_dqs0_val = rdll_dqs0_val;

// Set the initial read_dqs0_delay DLL parameter
// Controls the data strobes (DQS) placement within the read data eye
rdll_dqs0_val = x1 ; // initial parameter for inbound read DQS_0 (lower byte) placement
write_ddr_reg (DQS_DELAY_0, rdll_dqs0_val);

// Initialize DDR memory
int ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

// Locate the minimum range of the DLL_0 DLL
while ((read_ddr_mem (ADDR) && DDR_LO_BYTE_MASK) == ddr_data) {

write_ddr_reg (DQS_DELAY_0, rdll_dqs0_val--);
ddr_data = rnd();
write_ddr_mem (ADDR, ddr_data);
invalidate_flush_dcache (ADDR);

}
int min_rdll_dqs0_val = rdll_dqs0_val;

int optimal_rdll_dqs0_val = (max_rdll_dqs0_val + min_rdll_dqs0_val) / 2;
write_ddr_reg (DQS_DELAY_0, optimal_rdll_dqs0_val);

// Repeat for DQS_DELAY 1; the DLL parameter for the upper inbound byte
int rdll_dqs1_val = y1 ; // initial parameter for inbound read DQS_1 (upper byte) placement
.
.
.

Strictly speaking, the algorithm can be applied anytime
once the DDR block is operational. Software will be
required to guarantee the available DDR memory

resources for the training utility. Also the DDR memory
should not be accessed while the interface is being
trained. At minimum, the interface should be trained
110 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
whenever the DDR block becomes operational. The more
difficult question is whether is should be applied after that.
Can changes in the environment (voltage and
temperature) within the specifications render a trained
DDR interface useless? Ideally if software could detect
such an event, it could retrain the interface. However
there is no practical way for software to determine this,
short of a catastrophic failure that triggers a watchdog
reset.

Certainly software can periodically and blindly retrain the
interface. But this is hardly ideal. One alternative is for
software to track changes in the DDR controller’s master
DLL lock value and the I/O Calibration values. The
controller’s DLL lock value changes in relation to the core
voltage, and the DDR I/O calibration values changes in
relation to the DDR I/O voltage. The problem is that
software needs to initiate a calibration cycle in order to get
new I/O calibration values. In such a scenario software
would need to periodically poll these values in order to

determine when to retrain the interface (based on some
established criteria). This is obviously a very disruptive
exercise, especially considering that the I/Os need to be
recalibrated. There is also the option of just tracking the
DLL lock value.

The DDR controller itself has some small ability to
dynamically adapt to changes in the PVT conditions in
order to maintain established timing margins. Currently
the assumption is that the interface will only need to be
trained once and that the DLL settings at that point are
good enough to prevail across any variations in the
environment. IP51xx characterization data suggests that
this is indeed the case.

Table 5-9 provides the DLL programming parameters for
the IP51xx based on bring-up and characterization data.
In the case of DDR1, this represents the final values. In
the case of DDR2, this represents the starting values
which need to be tuned by training the interface.

5.8.7 Configuring the DDR Read
Response Watermark

The DDR subsystem contains a read response FIFO with
a programmable watermark setting. This read response
path functions under the requirement that when the cache
fetches a read response, it can do so by reading out the
entire cacheline in one uninterrupted burst. The reset
value of this watermark is a full cacheline. With this

setting, the read response is only transferred to the cache
after a whole cacheline has been received. Lowering the
watermark will reduce the latency of a cache miss.
However, setting it too low will result in data corruption as
the FIFO underflows.

The optimal setting can be calculated based on the rate of
data transfer into and out of the FIFO. The calculation is
as follows:

x16 DDR1 or DDR2 CORE_CLK_FREQ > DDR_CLK_FREQ
Watermark = ((CL/4) - ((CL/4) * (DDR_CLK_FREQ / CORE_CLK_FREQ)

x8 DDR1 or DDR2 CORE_CLK_FREQ > DDR_CLK_FREQ / 2
Watermark = ((CL/4) - ((CL/4) * (1/2) * (DDR_CLK_FREQ / CORE_CLK_FREQ)

x16 DDR1 or DDR2 CORE_CLK_FREQ ≤ DDR_CLK_FREQ
Watermark = 1

x8 DDR1 or DDR2 CORE CLK FREQ ≤ DDR_CLK_FREQ / 2
Watermark = 1

CL = Cacheline size in bytes

Fractional watermark values should be rounded up.

Additionally, whenever the watermark setting is
configured to anything less than a cacheline, the DDR
controller should also be configured for AUTO_REFRESH
mode and AUTO_PRECHARGE mode.

AUTO_REFRESH mode prevents the controller from
interrupting an ongoing read transaction to service an
auto refresh request. AUTO_PRECHARGE mode closes
the row after each access, and therefore prevents the

Table 5-9 DDR DLL Programming Parameter Values
DDR Type WR_DQS_SHIFT DQS_OUT_SHIFT DQS_DELAY_1 DQS_DELAY_0

DDR1 0x33 0x53 0x13 0x13
DDR2 0x30 0x56 0x15 0x15
www.ubicom.com 111

IP51xx Data Sheet – March 28, 2007
controller from interrupting an ongoing read transaction to
close a row whenever Tras_max (the maximum period of
time a row can be kept opened) expires.

Without these controller settings, a read transaction may
be interrupted. If the FIFO contains at least as much data
as the watermark setting, this can lead to the FIFO
underflowing when the cache fetches the entire cacheline
before it is readily available.

In all circumstances, a watermark setting of 0 is illegal and
will result in read response data corruption.

5.9 MII Controller Programming Model
When reading this section, please refer to Section 6.6 for
a general discussion of the MII controller and its external
interface signals. Refer to Section 7.10.2 for the register
definitions for the MII controller on Port E.

5.9.1 MII Controller Initialization
The following sample code shows how to initialize the MII
Controller.

;===
; initialization and start up
; void ipEthernet_thread_start_@INST@(void* NULL)

.global _ipEthernet_thread_start_@INST@

.type _ipEthernet_thread_start_@INST@ @function
;===

.section .text.ipEthernet_thread_start_@INST@,"ax",@progbits

_ipEthernet_thread_start_@INST@:
; The following address register are reserved
; A0 -> RAM variable base address
; A1 -> SerDes/MII register base address
; A2 -> RX buffer base address
; A3 -> TX buffer base address
; A7 -> Timer block register base address
moveai A0, #%hi(eth_isr_var_base_@INST@)
lea.4 A0, %lo(eth_isr_var_base_@INST@)(A0)
movei D0, #ETH_RX_PKT_INFO
lea.1 A2, (A0,D0)
movei D0, #ETH_TX_PKT_INFO
lea.1 A3, (A0,D0)
moveai A7, #%hi(TIMER_BASE)

; The following data register are reserved
; IFG and slot time are default to 10Base-T value
; SFD differs from preamble pattern by just 1 bit
movei D_one, #1
movei Difg, #ETH_10BASE_T_IPG
movei Dslot, #ETH_10BASE_T_SLOT
movei Dsfd, #0x5555
shmrg.2Dsfd, Dsfd, Dsfd
movei Dtmreg, #TIMER_SYSCOM(INT_BIT(HRT_INT_TIME_OUT))>>2
bset Dtmint, #0, #INT_BIT(HRT_INT_TIME_OUT)
bset Dtxint, #0, #INT_BIT(HRT_INT_TX_REQ)
bset Ddsrint, #0, #INT_BIT(HRT_INT_DSR)

; Initial suspend to wait for global interrupt enable
bset INT_SET(HRT_INT_TIME_OUT), #0, #INT_BIT(HRT_INT_TIME_OUT)
bset INT_MASK(HRT_INT_TIME_OUT), INT_MASK(HRT_INT_TIME_OUT), #INT_BIT(HRT_INT_TIME_OUT)
suspend

; Initialize MII I/O HW block for Ethernet operation
; Initialize A1 -> SerDes/MII register base address
; Reset I/O block before doing anything
; Set I/O mode to MII Ethernet (mode setting ?)
112 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
; Set TX water mark = 8 and RX FIFO water mark = 9
; Setup FIFO selection according to the MII FIFO choice
; A6 -> Optional extended port base address
moveai A1, #%hi(MII_REG_BASE)
move.4 MII_INT_MASK(A1), #0
movei MII_FUNCTION_REG(A1), #(1<<5)|@INST@IPETHERNET_THREAD_NUM
movei MII_FUNC_MODE_SEL(A1), #MII_FUNC_RESET_MII|MII_FUNC_CODE

#if defined(MII_2nd_REG_BASE)
moveai A6, #%hi(MII_2nd_REG_BASE)
movei MII_FUNCTION_REG(A6), #(1<<5)|@INST@IPETHERNET_THREAD_NUM
movei MII_FUNC_MODE_SEL(A6), #MII_FUNC_RESET_MII|MII_FUNC_CODE

#endif
cycles 4

#if defined(@INST@USE_MII_RE_FOR_ETHERNET)
 #if defined(@INST@MII_RE_USE_RMII)

movei MII_TRX_CONTROL+0(A1),
#%hi(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN)|(1<<MII_TRXCNTL_RMII_MODE))

movei MII_TRX_CONTROL+2(A1),
#%lo(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN)|(1<<MII_TRXCNTL_RMII_MODE))
 #elif defined(@INST@MII_RE_USE_RB_FOR_TX)

movei MII_TRX_CONTROL+0(A1), #%hi(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN))
movei MII_TRX_CONTROL+2(A1), #%lo(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN))

 #elif defined(@INST@MII_RE_USE_RI_FOR_TX)
movei MII_TRX_CONTROL+0(A1),

#%hi(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN)|(1<<MII_TRXCNTL_MII_PORT_RI))
movei MII_TRX_CONTROL+2(A1),

#%lo(MII_TRX_CONFIG_VAL|(1<<MII_TRXCNTL_TXCRC_EN)|(1<<MII_TRXCNTL_MII_PORT_RI))
 #else
 #error "Invalid MII mode option for port RE"
 #endif
#else
#error "Ubicom MII must use port RE"
#endif

movei MII_FUNC_MODE_SEL(A1), #MII_FUNC_SEL_MII|MII_FUNC_CODE
#if defined(MII_2nd_REG_BASE)

movei MII_FUNC_MODE_SEL(A6), #MII_FUNC_SEL_MII|MII_FUNC_CODE
#endif

move.1 MII_FUNC_TX_LEVEL(A1), #0x0008
move.1 MII_FUNC_RX_LEVEL(A1), #0x0009

; Configure pin directions
#if defined(MII_2nd_REG_BASE)

movei D0, #MII_PORT2_PIN_DIR
or.4 ETH_GPIO_CONTROL(A6), ETH_GPIO_CONTROL(A6), D0

#endif
movei D0, #MII_PORT_PIN_DIR
or.4 ETH_GPIO_CONTROL(A1), ETH_GPIO_CONTROL(A1), D0

; reset RX & TX FIFO
; Default to work with RX FIFO_0
bset Dfifosw, #0, #MII_FUNC_FIFO_SEL
bset MII_INT_SET(A1), #0, #MII_SET_RX_FIFO_RESET
bset MII_FUNCTION_REG(A1), MII_FUNCTION_REG(A1), #MII_FUNC_FIFO_SEL
bset MII_INT_SET(A1), #0, #MII_SET_TX_FIFO_RESET
bset MII_INT_SET(A1), #0, #MII_SET_RX_FIFO_RESET
bclr MII_FUNCTION_REG(A1), MII_FUNCTION_REG(A1), #MII_FUNC_FIFO_SEL

; Prepare MII interrupts and states
; Clear all pending interrupts
; Set INT mask to enble RX interrupts only
www.ubicom.com 113

IP51xx Data Sheet – March 28, 2007
; Enable RX operation (default to 10Base-T half duplex)
move.4 MII_INT_CLEAR(A1), #-1
movei MII_INT_MASK_LOW(A1),

#(1<<MII_INT_RX_1st_DATA)|(1<<MII_INT_RX_FIFO)|(1<<MII_INT_RX_EOP)|(1<<MII_INT_RX_CRS)
movei D0, #%hi(HRT_INT_IO_MASK)
movei D1, #%lo(HRT_INT_IO_MASK)
shmrg.2D0, D1, D0
move.4 INT_MASK1, D0; enable HW Ethernet INTs
bset MII_TRX_CONTROL(A1), MII_TRX_CONTROL(A1), #MII_TRXCNTL_RX_ENABLE
move.4 ETH_RANDOM_MASK(A0), #1
bset ETH_RX_SPEED_TEST(A0), #0, #ETH_SPEED_TEST_INVALID

; Set thread interrupt mask and kick off the first IFG timer
thread_timer_set_macro Difg
bset INT_CLR(HRT_INT_TIME_OUT), #0, #INT_BIT(HRT_INT_TIME_OUT)
bset INT_MASK(HRT_INT_TIME_OUT), INT_MASK(HRT_INT_TIME_OUT), #INT_BIT(HRT_INT_TIME_OUT)
bset INT_CLR(HRT_INT_TX_REQ), #0, #INT_BIT(HRT_INT_TX_REQ)
bset INT_MASK(HRT_INT_TX_REQ), INT_MASK(HRT_INT_TX_REQ), #INT_BIT(HRT_INT_TX_REQ)

moveai RP, #%hi(__mii_isr_eth_trx)
calli RP, %lo(__mii_isr_eth_trx)(RP)

5.10 PCI Controller Programming Model
When reading this section, please refer to Section 6.7 for
a general discussion of the PCI controller and its external
interface signals. Refer to Section 7.8.1 for the register
definitions for the PCI controller on Port B.

The PCI interface is implemented on Port B and Port C.
Port C is a slave of Port B. After being put into PCI mode,
the Port C interface is no longer used. All PCI transactions
are conducted through Port B.

A dedicated hard real-time thread (HRT) is needed to
service the PCI hardware.

5.10.1 PCI Startup
The first thing to be done after chip reset is to put Port B
and Port C into PCI mode. This is done by first writing Port
B's Function register (fields FN_SEL[2:0] = 1 (PCI),
RX_FIFO_SEL[3] = 0, FN_RESET[7:4] = 1 (RESET),
BR_TNUM[12:8] = thread number of HRT that will service
PCI, RX_FIFO_TNUM[20:16] = thread number of HRT
that will service PCI, and RX_FIFO_TNUM_EN[21] = 1).
Next Port C's Function register is set (field FN_SEL[2:0] =
1 (PCI)). Finally the PCI block is taken out of reset by
writing Port B's Function register again (field
FN_RESET[7:4] = 0 (RUN), leaving all other fields
unchanged).

At this point the PCI block is selected and reset. Note that
the PCI Bus is still in an undefined state at this point. The
HRT that is supporting PCI may now be started and will
continue with the reset process.

5.10.2 PCI Bus Reset
Resetting the PCI bus is accomplished by putting the PCI
arbiter into reset, thus preventing any device from using
the bus, then setting up the PCI bus clock, and resetting
the PCI bus according to the PCI 2.2 specification.

To reset the PCI bus, write the Port B Function Control 0
register (fields ARB_SM_RST_N[31] = 0 (RESET),
ARB_SM_SEL[30] = desired arbitration policy,
PCI_RST_N[29] = 0 (RESET), PCI_CLK_OUT_ENA[28]
= 1 (ENABLED), PCI_CLK_DIV[27:24] = desired
PCI_CLK frequency, and the rest of the fields to the
desired PCI configuration).

Wait 100 ms per the PCI 2.2 specification.

Come out of PCI bus reset by writing to Port B Function
Control 0 register (field PCI_RST_N[29] = 1 (RUN),
leaving all the other fields unchanged).

Program all of the PCI configuration registers through the
PCI BR register interface. These registers are described
in Section 7.8.1. Note that these registers are byte
addressable only.

Wait 1 second per the PCI specification.

Fill out the watermark levels, flush all buffers, clear and
select all Port B interrupts. Also select Port B interrupts 0
and 2, but not 1. Select Port C interrupt 2. Make sure the
PCI core is in Target mode (Port B Function Control 0
MASTER_TARGET_IF_SEL[23] = 0 (TARGET)).

Finally release the PCI Host arbiter by writing Function
Control 0 ARB_SM_RST_N[31] = 1 (RUN), leaving all
other fields unchanged.
114 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
The PCI is now in the Idle state.

5.10.3 PCI Idle State
The PCI Idle state occurs when the PCI controller has
finished all outstanding transactions or come out of reset,
and has nothing to do. It will suspend waiting for an
interrupt indicating one or more of the following
conditions:

• INTA has occurred on the PCI bus (Interrupt Port B
Interrupt 2, Port B PCI Interrupt Status bit 11).

• IP51xx software wants to start a master transaction
(appropriate software interrupt).

• A PCI Target transaction has arrived on the PCI bus
(Interrupt Port B Interrupt 2, Port B PCI Interrupt
Status bit 0).

• An error has occurred (Interrupt Port B Interrupt 2,
Port B PCI Interrupt Status bits 10:4).

In any case handle the condition as described below.

5.10.4 PCI Target Transactions

5.10.4.1 PCI Target Read
Target read is detected by a Port B Interrupt 2 interrupt
with Port B PCI Interrupt Status bit 0 set
(TAR_NEW_CMD). Bit 5 in Port B PCI Function Status 1
(TAR_READ) indicates that a read is desired.

In this case the HRT must fetch the appropriate data as
quickly as possible. The PCI core can be configured (Port
B Function Control 0 register, bit 16) to retry the read until
data is available, or just to insert delays.

The target address is obtained from the Port B Function
Status 0 register. This PCI bus address must be
translated into an IP51xx Protocol C bus address.

Turn on the Port B Interrupt 1, the Port B Tx FIFO
watermark.

Write byte enables into the Port B Transmit FIFO HI once.
This FIFO never underflows, it just uses the last value
over and over. So it only needs to be written once, not
once per data. Note that it needs to be written after each
FIFO flush.

Next, fill the Tx FIFO with data and set Port B Interrupt Set
register bit 16 (TAR_PCI_ACK) to tell the PCI core to send
the data out on the PCI bus. The FIFO is 32 deep and 32
bits wide. Thus each entry corresponds to a data cycle on
the PCI bus. Data is written to the FIFO via the Port B
Transmit FIFO LO register.

With a 270 MHz IP51xx part a 1/8 HRT gets one clock
every 29.6 ns. A PCI running at 33 MHz gets a clock

every 30 ns. Thus a 1/8 HRT can keep up with the PCI
bus (1/8 HRT PCI driver can write 2 words of data, and
then set TAR_PCI_ACK). Writing the additional 30 words
of data guarantees that the IP51xx will keep up with PCI
for at least 32 words, and still overlap the IP51xx moving
of data with data going out on the PCI bus. This
calculation must be done for your particular configuration.

Next, suspend and wait for something to happen. Either
the read will drain the FIFO below the watermark or the
transaction will end. In the former case, put however
many words are free into the FIFO and re-suspend. In the
latter case, you will get a TAR_NEW_CMD. At this point
(if you are trying to do streaming reads) check to see
whether the data in the FIFO is still valid and whether the
new transaction is a read to the address of the data at the
front of the FIFO. If so, simply do a TAR_PCI_ACK to start
the data flowing. Otherwise you must clean up by
disabling the Port B Interrupt 1, the Port B Tx FIFO
watermark and flushing the Tx FIFO.

Then proceed as if the PCI were in the Idle state.

5.10.4.2 PCI Target Write
Target write is detected by a Port B Interrupt 2 interrupt
with Port B PCI Interrupt Status bit 0 set
(TAR_NEW_CMD). Bit 4 in Port B PCI Function Status 1
(TAR_WRITE) indicates that a write is desired.

The target address is obtained from the Port B Function
Status 0 register. This PCI bus address must be
translated into a IP51xx Protocol C bus address.

The Port B Rx FIFO watermark interrupt is given by the
Port B Interrupt 2.

Now the HRT immediately suspends. It is then expecting
either the write will fill the Rx FIFO above the watermark
or the transaction will end.

When the FIFO fills above the watermark, read out the
watermark number of data words from the Port B Transmit
FIFO LO register and write them to the appropriate place.
You can use write byte enables from the Port B Transmit
FIFO HI register if desired or just write the entire word
regardless.

When the transaction finishes an interrupt on Port B PCI
Interrupt Status bit 1 (TAR_WRITE_OP_DONE) occurs.
In this case check the number of words in the Rx FIFO by
reading RX_FIFO_LEVEL. If there are 32 words in the
FIFO (it is full) there may be additional words in the PCI
core. In that case you must read eight words out and
again read RX_FIFO_LEVEL. If there were originally
fewer than 32 words in the Rx FIFO you do not have to
read out eight words.
www.ubicom.com 115

IP51xx Data Sheet – March 28, 2007
At this point, you have a completed write transaction, and
know the number of words left to read in the Rx FIFO. Set
TAR_PCI_ACK, and then empty the number of words left
in the Rx FIFO. This gives the PCI bus a chance to
overlap with the emptying of the Rx FIFO.

When you are done emptying the FIFO, proceed as if in
the PCI Idle state.

5.10.5 PCI Master Transactions

5.10.5.1 Leaving the PCI Idle State
After receiving a software interrupt and finding out what
master transaction the software desires, you must ensure
that no target transaction sneaks in and gets clobbered
while you turn the PCI interface about. Recall that in the
PCI Idle state the PCI core is left in Target mode so that
target transactions can start immediately.

First set TAR_FORCE_RETRY in the Port B Function
Control 0 register.

Then the driver should process the requested transaction,
calculating the address for getting or storing data, and
filling out Port B PCI Function Control 1
(MAS_PCI_ADDR).

If the processing after setting TAR_FORCE_RETRY
takes more than six PCI clocks, you are good to go. If not
stall for the remaining PCI clocks.

Now check TAR_NEW_CMD. If a target command has
arrived you must process that command. After you are
done, proceed to doing the Master transaction.

5.10.5.2 Doing the Master Transaction
Write Port B PCI Function Control 0 (fields
MAS_TAR_IF_SEL, MAS_WCOUNT, MAS_RCV_BE,
and MAS_PCI_CMD).

If the transaction is a write transaction, then write all of the
data to Port B PCI Transmit FIFO LO and the
corresponding byte enables to Port B PCI Transmit FIFO
HI.

Then start the master transaction by setting Port B PCI
Interrupt Set bit 20 (MAS_PCI_REQ).

Suspend, waiting for the MAS_COMPLETE interrupt.

If the transaction is a read transaction, then read all of the
data from Port B PCI Receive FIFO HI.

The Master transaction is now finished; return to the PCI
Idle state.

5.10.5.3 Returning to PCI Idle State
Release TAR_FORCE_RETRY and return to the PCI Idle
state.

5.10.6 PCI Interrupts and Errors
When you receive an INTA or any of the error interrupts,
respond appropriately. For errors, reset the PCI bus
unless there is some application specific way to recover.
116 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.11 GMAC Programming Model
When reading this section, please refer to Section 6.8 for
a general discussion of the GMAC and its external
interface signals. Refer to Section 7.11.1 for the register
definitions for the GMAC on Port F.

5.11.1 GMAC Initialization
The following sample code shows how to initialize the
GMAC.

;===
; initialization and start up
; void ipEthernet_thread_start_@INST@(void* NULL)

.global _ipEthernet_thread_start_@INST@

.type _ipEthernet_thread_start_@INST@ @function
;===

.section .text.ipEthernet_thread_start_@INST@,"ax",@progbits

_ipEthernet_thread_start_@INST@:
; The following address register are reserved
; A0 -> RAM variable base address
; A1 -> SerDes/MII register base address
; A2 -> RX buffer base address
; A3 -> TX buffer base address
; A7 -> Timer block register base address
moveai A0, #%hi(eth_isr_var_base_@INST@)
lea.4 A0, %lo(eth_isr_var_base_@INST@)(A0)
movei D0, #ETH_RX_PKT_INFO
lea.1 A2, (A0,D0)
movei D0, #ETH_TX_PKT_INFO
lea.1 A3, (A0,D0)
moveai A7, #%hi(TIMER_BASE)

; The following data register are reserved
; IFG and slot time are default to 10Base-T value
; SFD differs from preamble pattern by just 1 bit
movei D_one, #1
movei Difg, #ETH_10BASE_T_IPG
movei Dslot, #ETH_10BASE_T_SLOT
movei Dsfd, #0x5555
shmrg.2Dsfd, Dsfd, Dsfd
movei Dtmreg, #TIMER_SYSCOM(INT_BIT(HRT_INT_TIME_OUT))>>2
bset Dtmint, #0, #INT_BIT(HRT_INT_TIME_OUT)
bset Dtxint, #0, #INT_BIT(HRT_INT_TX_REQ)
bset Ddsrint, #0, #INT_BIT(HRT_INT_DSR)

; Initial suspend to wait for global interrupt enable
bset INT_SET(HRT_INT_TIME_OUT), #0, #INT_BIT(HRT_INT_TIME_OUT)
bset INT_MASK(HRT_INT_TIME_OUT), INT_MASK(HRT_INT_TIME_OUT), #INT_BIT(HRT_INT_TIME_OUT)
suspend

; Initialize MII I/O HW block for Ethernet operation
; Initialize A1 -> GMII register base address
; Reset I/O block before doing anything
; Set I/O mode to RG/MII/RMII Ethernet (mode setting ?)
; Set TX water mark = 16/max and RX FIFO water mark = 17
; Setup FIFO selection according to the MII FIFO choice
; A6 -> Blocking region base address
moveai A1, #%hi(GMII_REG_BASE)
moveai A6, #%hi(GMII_REG_BASE + IO_PORT_BR_OFFSET)
move.4 GMII_INT_MASK(A1), #0
www.ubicom.com 117

IP51xx Data Sheet – March 28, 2007
movei GMII_FUNCTION_REG(A1), #(1<<5)|@INST@IPETHERNET_THREAD_NUM
movei GMII_FUNC_MODE_SEL(A1),

#(@INST@IPETHERNET_THREAD_NUM<<GMII_FUNC_THREAD)|GMII_FUNC_RESET_MII|GMII_FUNC_CODE
cycles 4

#if defined(@INST@GMII_RF_USE_GMII)
movei GMII_TRX_CONTROL+0(A1), #%hi(GMII_TRXCNTL_RGMII|GMII_TRXCNTL_CLK125MHz)
movei GMII_TRX_CONTROL+2(A1), #%lo(GMII_TRXCNTL_RGMII|GMII_TRXCNTL_CLK125MHz)

#elif defined(@INST@GMII_RF_USE_MII)
movei GMII_TRX_CONTROL+0(A1), #%hi(GMII_TRXCNTL_MII|GMII_TRXCNTL_CLK2_5MHz)
movei GMII_TRX_CONTROL+2(A1), #%lo(GMII_TRXCNTL_MII|GMII_TRXCNTL_CLK2_5MHz)

#elif defined(@INST@GMII_RF_USE_RMII)
movei GMII_TRX_CONTROL+0(A1), #%hi(GMII_TRXCNTL_RMII|GMII_TRXCNTL_CLK2_5MHz)
movei GMII_TRX_CONTROL+2(A1), #%lo(GMII_TRXCNTL_RMII|GMII_TRXCNTL_CLK2_5MHz)

#else
#error "Invalid MII mode option for port RF"
#endif

movei GMII_FUNC_MODE_SEL(A1),
#(@INST@IPETHERNET_THREAD_NUM<<GMII_FUNC_THREAD)|GMII_FUNC_SEL_MII|(1<<GMII_FUNC_FIFO_SEL)|GMII_
FUNC_CODE

move.1 GMII_FUNC_TX_LEVEL(A1), #0x0000
move.1 GMII_FUNC_RX_LEVEL(A1), #0x0011

; Configure blocking region
; Reset
movei D0, #%lo(GMII_BR_MAC_CONFIG1_RESET)
movei D1, #%hi(GMII_BR_MAC_CONFIG1_RESET)
shmrg.2D0, D0, D1
move.4 GMII_BR_MAC_CONFIG1(A6), D0
movei D0, #%lo(GMII_BR_IF_CNTL_RESET)
movei D1, #%hi(GMII_BR_IF_CNTL_RESET)
shmrg.2D0, D0, D1
move.4 GMII_BR_IF_CNTL(A6), D0

; Basic configuration
#if defined(@INST@GMII_RF_USE_GMII)

movei D0, #%lo(GMII_BR_MAC_CONFIG2_GMII|GMII_BR_MAC_CONFIG2_FD)
movei D1, #%hi(GMII_BR_MAC_CONFIG2_GMII|GMII_BR_MAC_CONFIG2_FD)

#elif defined(@INST@GMII_RF_USE_MII) || defined(@INST@GMII_RF_USE_RMII)
movei D0, #%lo(GMII_BR_MAC_CONFIG2_MII)
movei D1, #%hi(GMII_BR_MAC_CONFIG2_MII)

#endif
shmrg.2D0, D0, D1
move.4 GMII_BR_MAC_CONFIG2(A6), D0
;move.4GMII_BR_IPG_IFG(A6), #0x40605060; dummy code to repeat default value
;move.4GMII_BR_HALF_DUPLEX(A6), #0x00a1f037; dummy code to repeat default value
;move.4GMII_BR_MAX_FRAME(A6), #1536; dummy code to repeat default value

; MII management I/F configuration (Disable this unimplemented feature!)
bset GMII_BR_MII_CONFIG(A6), #7, #31; Set up MII mgmt I/F (slowest clock)

; Write local MAC address
move.4 GMII_BR_LOCAL_MAC1(A6), #0; ETH_RX_LOCAL_MAC_BUF(A0)
move.4 GMII_BR_LOCAL_MAC2(A6), #0; ETH_RX_LOCAL_MAC_BUF+4(A0)

; Configure pin directions
movei D0, #GMII_PORT_PIN_DIR
or.4 ETH_GPIO_CONTROL(A1), ETH_GPIO_CONTROL(A1), D0

; reset RX & TX FIFO
; Default to work with RX FIFO_0
118 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
bset Dfifosw, #0, #GMII_FUNC_FIFO_SEL
bset GMII_INT_SET(A1), #0, #GMII_SET_RX_FIFO_RESET
movei GMII_FUNC_MODE_SEL(A1),

#(@INST@IPETHERNET_THREAD_NUM<<GMII_FUNC_THREAD)|GMII_FUNC_SEL_MII|GMII_FUNC_CODE
bset GMII_INT_SET(A1), #0, #GMII_SET_TX_FIFO_RESET
bset GMII_INT_SET(A1), #0, #GMII_SET_RX_FIFO_RESET

; Prepare MII interrupts and states
; Clear all pending interrupts
; Set INT mask to enble RX interrupts only
; Enable RX operation (default to 10Base-T half duplex)
move.4 GMII_INT_CLEAR(A1), #-1
movei GMII_INT_MASK_LOW(A1),

#(1<<GMII_INT_RX_1st_DATA)|(1<<GMII_INT_RX_FIFO)|(1<<GMII_INT_RX_EOP)|(1<<GMII_INT_TX_EOP)
movei D0, #%hi(HRT_INT_IO_MASK)
movei D1, #%lo(HRT_INT_IO_MASK)
shmrg.2D0, D1, D0
move.4 INT_MASK1, D0; enable HW Ethernet INTs
move.4 ETH_RANDOM_MASK(A0), #0; initalize ETH_GMII_TX_COUNT
bset ETH_RX_SPEED_TEST(A0), #0, #ETH_SPEED_TEST_INVALID

; Set thread interrupt mask and kick off the first IFG timer
;thread_timer_set_macro Difg
;bset INT_CLR(HRT_INT_TIME_OUT), #0, #INT_BIT(HRT_INT_TIME_OUT)
;bset INT_MASK(HRT_INT_TIME_OUT), INT_MASK(HRT_INT_TIME_OUT), #INT_BIT(HRT_INT_TIME_OUT)
bset INT_CLR(HRT_INT_TX_REQ), #0, #INT_BIT(HRT_INT_TX_REQ)
bset INT_MASK(HRT_INT_TX_REQ), INT_MASK(HRT_INT_TX_REQ), #INT_BIT(HRT_INT_TX_REQ)

; Start operation
movei D0, #%lo(GMII_BR_MAC_CONFIG1_START)
movei D1, #%hi(GMII_BR_MAC_CONFIG1_START)
shmrg.2D0, D0, D1
move.4 GMII_BR_MAC_CONFIG1(A6), D0

#if defined(@INST@GMII_RF_USE_GMII)
movei D0, #%lo(GMII_BR_IF_CNTL_GMII_START)
movei D1, #%hi(GMII_BR_IF_CNTL_GMII_START)

#elif defined(@INST@GMII_RF_USE_MII)
movei D0, #%lo(GMII_BR_IF_CNTL_MII_START)
movei D1, #%hi(GMII_BR_IF_CNTL_MII_START)

#elif defined(@INST@GMII_RF_USE_RMII)
movei D0, #%lo(GMII_BR_IF_CNTL_RMII_START)
movei D1, #%hi(GMII_BR_IF_CNTL_RMII_START)

#else
#error "Invalid MII mode option for port RF"
#endif

shmrg.2D0, D0, D1
move.4 GMII_BR_IF_CNTL(A6), D0

moveai RP, #%hi(__gmii_isr_eth_trx)
calli RP, %lo(__gmii_isr_eth_trx)(RP)

#else /* defined(IPETHERNET_USE_GMII) */
#error"ipEthernet instance must use either SerDes or MII"
www.ubicom.com 119

IP51xx Data Sheet – March 28, 2007
5.12 USB Controller Programming Model
Please refer to Section 6.9 for a general discussion of the
high-speed USB controller and its external interface
signals. Refer to Section 7.15.1 for the register definitions
for the High-Speed USB controller.

The IP51xx supports both USB host mode and USB
peripheral mode. Device drivers for Host mode are
currently available from Ubicom. To determine the
availability of Peripheral mode drivers, contact your
Ubicom sales representative.

5.12.1 USB Initialization
The following sample code shows how to initialize the
High-Speed USB Controller.

/*
 * Configure the port. Set the thread that will access the port, reset the function and
 * pull PLL out of reset, and deassert function reset
 */
DEBUG_INFO("Initializing the USB port %d", USB_20_PORT);
arch_io_port(USB_20_PORT)->function = (IPUSB20_HRT_THREAD_NUM << 8) | (1 << 4) | 1;
arch_io_port(USB_20_PORT)->ctl0 = (1 << 5)| (1 << 4) | 1;
usb_timer_blocking_sleep(TICK_RATE/10);
arch_io_port(USB_20_PORT)->function = (IPUSB20_HRT_THREAD_NUM << 8) | 1;;

/*
 * Configure interrupts
 */
DEBUG_INFO("Setting HRT interrupts");
arch_interrupt_enable(THREAD_INT(IPUSB20_HRT_THREAD_NUM));
arch_interrupt_enable(PORT_OTHER_INT(USB_20_PORT));
arch_io_port(USB_20_PORT)->int_clr = (1 << 3);
arch_io_port(USB_20_PORT)->int_mask = (1 << 3);

/*
 * Configure USB interrupts. We poll endpoint completion interrupts, so turn off
 * the enable bits for these interrupts
 */
DEBUG_INFO("Setting USB interrupts");
u16_t discard = arch_io_port_usb(usbhcdi)->intrTx;
discard = arch_io_port_usb(usbhcdi)->intrRx;
discard = arch_io_port_usb(usbhcdi)->intrUsb;
arch_io_port_usb(usbhcdi)->intrTxE = 0xFFFF;
arch_io_port_usb(usbhcdi)->intrRxE = 0xFFFF;
arch_io_port_usb(usbhcdi)->intrUsbE = 0xFF;

arch_io_port_usb(usbhcdi)->devCtl = 0x01;

5.12.2 USB Transactions
Figure 5-1 shows a flow chart for an example bulk IN
transaction. Figure 5-2 shows a bulk OUT transaction.

Full descriptions of the available USB transactions are
included in Ubicom’s SDK.
120 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Figure 5-1 USB Bulk IN Transaction

Transaction
scheduled

ReqPkt set?

IN token sent

STALL
received?

RxStall set
ReqPkt cleared

Error Count cleared
Interrupt generated

Target has
shut down pipe

Implies problem at
peripheral end of
connection

NAK
received?

NAK Limit
reached?

Error Count
cleared

NAK Timeout set
Endpoint halted

Interrupt generated

DATA0/1
received?

ACK sent
RxPktRdy set

ReqPkt cleared
Error Count cleared
Interrupt generated

Transaction
complete

Error Count
incremented

Error Count
= 3?

Error bit set
ReqPkt cleared

Error Count cleared
Interrupt generated

Transaction
deemed

completed

YesNo

Yes

No

Yes

No

Yes

NoYes

No

Yes

No
www.ubicom.com 121

IP51xx Data Sheet – March 28, 2007
Figure 5-2 USB Bulk OUT Transaction

Transaction
scheduled

TxPktRdy set?

DATA0/1 Packet sent

STALL
received?

RxStall set
TxPktRdy cleared

Error Count cleared
Interrupt generated

Target has
shut down pipe

Implies problem at
peripheral end of
connection

ACK
received?

NAK Limit
reached?

Error Count
cleared

NAK Timeout set
Endpoint halted

Interrupt generated

NAK
received?

TxPktRdy cleared
Error Count cleared
Interrupt generated

Transaction
complete

Error Count
incremented

Error Count
= 3?

Error bit set
TXPktRdy cleared

Error Count cleared
Interrupt generated

Transaction
deemed

completed

YesNo

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

OUT token sent
122 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.13 On-Chip Memory Programming Model

5.13.1 Initialization After System Reset
After a hard chip reset, an initialization sequence needs to
be applied to the On-Chip Memory (OCM) in order to get
it into a functional state. This is due to system reset being
decoupled from the BIST engine. This element allows a
BIST soft repair to persist through a system reset but
leaves the OCM unusable until the BIST engine is reset by
software.

The following code implements a suitable On-Chip
Memory initialization sequence:

OCM_BIST_CFG_WRCK = 7
OCM_BIST_CFG_WRST = 6
OCM_BIST_CFG_RST_SMS_A = 5

// Initialize pointer to base of OCM Registers
moveai a0, #%hi(OCP_OCMC_ADDR)

// Assert BIST reset signals : WRST and
RST_SMS_A
move.4 OCM_BIST_CFG(a0), #((0x1<<OCM_BIST_
CFG_WRST)|(0x1<<OCM_BIST_CFG_RST_SMSM_A))
move.4 OCM_BIST_CFG(a0), #0x00
// Deassert WRST and RST

// Create a WRCK clock edge
bset OCM_BIST_CFG(a0), OCM_BIST_CFG(a0), #OCM_
BIST_CFG_WRCK
nop // Allow reset to take effect

5.13.2 Executing BIST/BISR to OCM
The following code segment will execute a combined
BIST (Built In Self Test) and BISR (Built In Self Repair)
sequence to the On-chip Memory. BIST is first executed
in order to identify any memory locations that may benefit
from soft repair. If BIST fails, thereby indicating that a soft
repair is necessary, BISR is then executed. BISR fails if
there is insufficient redundant memory resource to repair
the location. Otherwise the memory location is succesfully
repaired.

#define OCMC_BASE (OCP_BASE + OCP_OCMC)
#define OCMC_BANK_MASK 0x00
#define OCMC_BIST_CNTL 0x04
#define OCMC_BIST_STAT 0x08

#define OCMC_BANK_PROG(n) ((1<<(n))-1)

#define OCMC_BIST_WRCK (1<<7)
#define OCMC_BIST_RESET (1<<5)
#define OCMC_BIST_SMART (1<<4)
#define OCMC_BIST_RUN (1<<3)
#define OCMC_BIST_REPAIR (1<<2)

#define OCMC_BIST_READY (1<<3)
#define OCMC_BIST_FAIL (1<<2)

bclr OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),
#%bit(OCMC_BIST_WRCK)

; Start BIST
bset OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_RUN)
bset OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_REPAIR)
bset OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_SMART)
pipe flush 0

; Wait for BIST to start running
1: bset OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_WRCK)
jmpt.t .+4
bclr OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_WRCK)
btst OCMC_BIST_STAT(A1),

#%bit(OCMC_BIST_READY)
jmpne.t 1b

1: bset OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),
#%bit(OCMC_BIST_WRCK)

jmpt.t .+4
bclr OCMC_BIST_CNTL(A1), OCMC_BIST_CNTL(A1),

#%bit(OCMC_BIST_WRCK)
btst OCMC_BIST_STAT(A1),

#%bit(OCMC_BIST_READY)
jmpeq.t 1b

btst OCM_BIST_STAT(a1),
#%bit(OCM_BIST_STAT_READY_SMS)

jmpeq fail
btst OCM_BIST_STAT(a1),

#%bit(OCM_BIST_STAT_FAIL_SMS)
jmpne fail
pass:

5.13.3 Applying BIST Soft Repair to OCM
If the BIST soft repair has been applied, its effect will
persist even through a system reset. It will remain in effect
until the OCM initialization sequence is exercised,
BIST/BISR is executed, the OCM Code Request Buffer is
flushed, or an interruption to the core power supply
causes the chip to reset.

5.13.4 Flushing the OCM Code Request
Buffer

All instruction back accesses conducted via the data port
are initially posted into a Code Request Buffer. The buffer
can store one posted access per thread. Sometimes it is
www.ubicom.com 123

IP51xx Data Sheet – March 28, 2007
beneficial to guarantee that any posted accesses are
completed. For any particular thread to guarantee that
any posted transactions from the same thread are
completed, a data port read of a known address from any
instruction bank can be applied. The completion of this
read guarantees that the entry corresponding to the
thread is empty. In order to globally ensure that all posted
transactions are complete, software will have to set up
some number of idle OCM instruction fetch cycles. The
number of cycles is equal to the number of threads.

The OCM code request buffer may need to be flushed if
software changes the designation of individual memory
banks as either code or data banks. Software should flush
the request buffers before changing this code/data bank
mapping. This should be done only if software has
previously made a data port access of a code bank which
it now wants to designate as a data bank.

Additionally, software will need to flush the write data
buffer before redesignating a data bank into a code bank.
The procedure for flushing the write data buffer is to
ensure that there are no write accesses to the on-chip
data memory for 5 core clock cycles.

5.14 Processor Programming Model

5.14.1 Handling Serror and Aerror
Error conditions in the Protocol C peripherals may result
in an serror (synchronous error) trap or an aerror
(asynchronous error) interrupt. The processor simply
maintains status to indicate whether an serror or aerror
has occurred. It maintains no further information
regarding the error. More detailed information regarding
the error may be maintained (optionally) by the individual
peripherals. When an serror or aerror is detected by the
processor, it is intended that the processor read all
peripheral specific serror or aerror (as appropriate) status
registers to determine the actual cause. Not all
peripherals maintain additional status information for
serrors. In these cases, the trapped instruction itself must
be examined to determine the error cause. When a
peripheral does not maintain status information for an
aerror, there is little that software can do to determine the
error cause. Table 5-10 and Table 5-11 list possible serror
causes, as well as a description of the peripheral specific
error status (if any).

5.14.2 Handling Traps
A processor trap occurs to indicate an error condition for
the currently executing instruction. Each thread has a
TRAP_CAUSE register with one bit defined for each
possible thread cause.

The global register MT_TRAP has one bit for each thread.
When that bit is a 1, it indicates that for the corresponding
thread, one of the bits in its TRAP_CAUSE register is set.

Software can set or clear bits in the MT_TRAP register by
writing to the corresponding bits in MT_TRAP_SET or
MT_TRAP_CLR, respectively.

Software cannot write directly to MT_TRAP.

5.14.2.1 How to Enable Traps
You can enable traps for a given thread by writing a 1 in
that thread’s bit position in the global MT_TRAP_EN
register. You can disable traps for a given thread by
writing a 0 in that thread’s bit position.

Table 5-10 Possible Serror Causes
Serror
Source Error Cause Status

Register
OCM Instruction fetch from data

bank
None

I/O Access to unimplemented
memory space in non-
blocking region

None

I/O Illegal access to read-only
or write-only registers in
nonblocking region

None

I/O Unauthorized thread
access to blocking region

None

I/O When enabled,
unauthorized thread
access to the RX FIFO
LOW register

None

Table 5-11 Possible Aerror Causes
Aerror
Source Error Cause Status

Register
I-Cache Illegal transaction on MCB ICCR_STAT[0]
D-Cache Illegal transaction on MCB

(including write to flash)
DCCR_STAT[0]

PCI Access to unimplemented
memory space

None

PLIO Access to unimplemented
memory space

None
124 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.14.2.2 Determining Trap Causes
When a processor trap occurs, the cause of the trap can
be determined by reading the TRAP_CAUSE register for
the affected thread. See Section 7.2.3 for general
descriptions of the defined trap causes.

5.14.2.3 Simultaneous Trap and Blocking
Conditions

There are various types of instruction errors which can
cause a trap. Non-acknowledged instruction fetch or data
access requests can cause an instruction to be blocked.
Instructions can be blocked only if they are free of error
conditions. Furthermore, certain error conditions can be
reported simultaneously (for the same instruction), while
others are precluded by prior errors.

Table 5-12 lists the possible error conditions which can
lead to an instruction trap, divided into four groups.

Only errors within the same group will be reported
simultaneously. Errors in lower-numbered groups take
priority over errors in higher-numbered groups. A src1
serror can only happen if there is no src1_decode_err.
Similarly, dst_serror can only happen if there is no
dst_decode_err.

5.14.2.4 Trap and Block Actions
The following tables show the trap and block actions
which are taken for all combinations of instruction errors,
data operand errors, instruction acknowledges, and data
acknowledges.

The following abbreviations are used in the tables:

ierr = any error in groups 1, 2, or 3
derr = any error in group 4
iack = acknowledged protocol C instruction fetch
dack = acknowledged or no protocol C data request
val = mp8 val
sval = mp8 sval
trap = ex trap
block = ex d block

Table 5-12 Error Groups
Error
Group Error Description

1 i_decode_err PC decode error
2 i_serror Instruction fetch serror
3 illegal_inst Illegal instruction
4 src1_decode_err SRC1 operand address

decode error
dst_decode_err DST operand address

decode error
src1_misaligned SRC1 operand misaligned
dst_misaligned DST operand misaligned
src1_serror SRC1 operand serror
dst_serror DST operand serror
dcapt Write address trap error
dst_range_err DST memory protection

error
src1_range_err SRC1 memory protection

error
i range err Instruction memory

protection error
www.ubicom.com 125

IP51xx Data Sheet – March 28, 2007
Table 5-13 applies to error conditions for threads that
have traps enabled.

Table 5-14* applies to errors for threads which have traps
disabled.

Table 5-13 Actions for Threads with Traps Enabled
Inputs Outputs

Action Commentierr derr iack dack val sval trap block
0 x 0 x 0 1 0 0 blocked by AC instruction fetch not acknowledged
0 0 1 0 0 1 0 1 blocked by EX data access not acknowledged
0 0 1 1 1 1 0 0 instruction

completes
1 x 0 x 0 0 1 0 trapped i_decode_err, i_serror
1 x 1 x 0 0 1 0 trapped illegal_inst
0 1 1 0 0 0 1 0 trapped d_serror (plus possibly others)
0 1 1 1 0 0 1 0 trapped decode_err, misaligned,

memory protection, write address

Table 5-14 Actions for Threads with Traps Disabled
Inputs Outputs

Action Commentierr derr iack dack val sval trap block
0 x 0 x 0 1 0 0 blocked by AC instruction fetch not acknowledged
0 0 1 0 0 1 0 1 blocked by EX data access not acknowledged
0 0 1 1 1 1 0 0 instruction

completes
1 x 0 x 0 0 0 0 instruction

ignored
i_decode_err, i_serror

1 x 1 x 0 0 0 0 instruction
ignored

illegal_inst

0 1 1 0 0 0 0 0 instruction
ignored

d_serror (plus possibly others)

0 1 1 1 1 1 0 0 instruction
completes

decode_err, misaligned,
memory protection, write address
126 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.14.3 Memory Protection
Any thread is permitted to read and write to any direct
space register. However, execution from instruction
space and reads and writes to the indirect space are
permitted only if these operations are enabled for the
executing thread and the address being accessed. There
are three pairs of address range registers for the
instruction space and four pairs for the data space.
Additionally, each range pair has a corresponding active-
high thread enable mask. If an instruction fetch or indirect
space data access falls within the inclusive range defined
by one of the appropriate range pairs, and that range is
enabled for the executing thread, then the access is
permitted. Otherwise, it is trapped, with one (or more) of
three possible causes.

The range values and thread enables are received from
the register module on the following busses:

reg i range hi =
i range2 hi[31:2],
i range1 hi[31:2],
i range0 hi[31:2]

reg i range lo =
i range2 lo[31:2],
i range1 lo[31:2],
i range0 lo[31:2]

reg i range en =
i range2 en[‘MP TNUM-1:0],
i range1 en[‘MP TNUM-1:0],
i range0 en[‘MP TNUM-1:0]

reg d range hi =
d range3 hi[31:2],
d range2 hi[31:2],
d range1 hi[31:2],
d range0 hi[31:2]

reg d range lo =
d range3 lo[31:2],
d range2 lo[31:2],
d range1 lo[31:2],
d range0 lo[31:2]

reg d range en =
d range3 en[‘MP TNUM-1:0],
d range2 en[‘MP TNUM-1:0],
d range1 en[‘MP TNUM-1:0],
d range0 en[‘MP TNUM-1:0]

The following three error indications are asserted in case
of access violations for the general destination, source 1,
or instruction accesses, respectively:

dst_range_err, src1 range err, i range err

5.15 Security Block Programming Model

5.15.1 Security Block Clock
The clock to the Security Module is controllable by
software via the clock core configuration register. This bit
controls a logic gate that either enables or disables the
clock. The clock is enabled when the chip comes out of
reset.

Software must disable the clock when the Security
Module is not in use in order to reduce core power
consumption.

5.15.2 Enabling the Security Block Clock
When enabling the clock, software must wait for an
appropriate duration before it can acess the Security
Module.

Software must wait for a period of 6 core clock cycles if the
very first security module access is a read operation. This
is demonstrated in the following code sequence:

bset (a0), (a0), #OCP_EN_CLK_SEC// Instruction
to enable security module clock

// delay for OCP write logic
nop
nop
nop
// delay for clock block logic
nop
nop
nop

Software is required to wait for a period of 11 core clock
cycles if the very first security module access is a write
operation. This is demonstrated in the following code
sequence:

bset (a0), (a0), #OCP_EN_CLK_SEC// Instruction
to enable security module clock

// delay for OCP write logic
nop
nop
nop
// delay for clock block logic
nop
nop
nop
// distance between read and write in MP
pipeline
nop
nop
nop
nop
nop
www.ubicom.com 127

IP51xx Data Sheet – March 28, 2007
5.16 Clocks Programming Model
Configuring the PLLs to generate the desired system
clocks must be done carefully in order to minimize the
impact of any large power surges. When the PLLs are
enabled and system clocks are switched over from low to
high frequencies, there are instantaneous current spikes
across the clock tree. The magnitude and duration of the
power surge is dependent on the clock frequency change
and the number of clocks being enabled. Therefore,
whenever software exercises a critical timing path before
core power normalizes, there is a potential for failure. This
may be especially evident when switching from a very low
frequency to a very high frequency on a slow process part
under minimum voltage conditions — for example,
switching the core frequency from 12 MHz to 270 MHz.

There are number of things software can do i to alleviate
this problem. First, do not enable all the PLLs around the
same time. Stage the de-assertion of PLL reset in order to
bring each PLL up over a reasonable period of time.
Second, use the core forward divider to ramp the core
clock up to it’s desired frequency. Ramping the core clock
up in 2 stages should be sufficient.

The following is a recommended sequence for bringing
the system clocks online based on these principles. It
assumes that the PLLs are already in reset:

1. Initialize the Core PLL Reference, Feedback, and
Output dividers for a desired core clock frequency.

2. Set the Core Forward Divider to divide the target
core clock frequency by two.r4

3. Initialize the I/O PLL Reference, Feedback, and
Output dividers for a 500 MHz I/O clock frequency.

4. Initialize the DDR PLL Reference, Feedback, and
Output dividers for a desired DDR clock frequency.

5. Initialize the DDR Deskew PLL Feedback divider
with a value of 0. This is the configuration in order
for it to deskew the DDR clock correctly.

6. Wait for a period greater than or equal to 5µs.
7. Take the Core PLL out of reset.
8. Wait 500 system reference clocks for the Core PLL

to lock.
9. Configure the Core source select to switch to the

Core PLL.
10. Wait 100 core clock cycles for power to normalize.
11. Set the Core Forward Divider for the desired core

clock frequency.
12. Wait 100 core clock cycles for power to normalize.
13. Take the I/O PLL out of reset.
14. Wait 500 system reference clocks for the I/O PLL to

lock.
15. Configure the I/O source select to switch to the I/O

PLL.
16. Take the DDR PLL out of reset.

17. Wait 500 system reference clocks for the DDR PLL
to lock.

18. Configure the DDR source select to switch to the
DDR PLL.

19. Set the DDR Deskew source select to switch to the
Deskew PLL. It is essential that this step be taken
before the Deskew PLL is brought out of reset. This
ensures that the entire DDR clock system is a
closed loop before turning on the Deskew PLL.

20. Take the DDR Deskew PLL out of reset.
21. Wait 500 system reference clocks for the DDR

Deskew PLL to lock.

5.17 Random Number Generator
The Random Number Generator (RNG) consists of three
oscillators feeding a Linear Feedback Shift Register
(LFSR) after synchronization to the core clock.

Each read of this register returns a uniformly distributed
random number. Since the register shifts one bit per core
clock, if software needs multiple uncorrelated numbers, it
should wait at least 32 core clocks between reads. If
software is building a strong cryptographic key longer
than 32 bits, it should wait much longer between reads to
allow true randomness to accumulate.

The oscillators can be disabled. When their enable bit is
high, the oscillator is running, and when it is low it is
stopped, with the output in a low state. The oscillator
enable bit powers up equal to zero. When the oscillators
are disabled, the random number generator still
generates uniformly distributed random numbers, but the
only source of true randomness is in the timing of the
register reads.
128 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.18 Reset

5.18.1 Reset Sources
The possible sources that can cause a chip reset are:

• External chip reset
• Power-on reset
• Reset from the Watchdog module
• Reset from the Debug Port module
• Reset caused by a processor trap
• Software initiated reset

When a chip reset occurs, the reason for the reset can be
determined by reading the Reset Reasons register (see
Section 5.18.5 and Table 7-5).

5.18.2 Reset Output To External Devices
The IP51xx chip does not have a dedicated reset signal
output to cause external devices to reset when it is being
reset. If an external device requires such a reset signal, a
GPIO pin on the IP51xx could be used for this purpose. All
GPIO pins would be configured as input pins after an chip
reset. The GPIO pin used as a reset for an external device
should have a pullup or pulldown resistor on the board to
pull the signal to the correct reset active level for the
device. After the chip is initialized, the software can start
to drive the GPIO pin to the desired level.

5.18.3 I/O Function Resets
The function reset bits in I/O port Function registers only
reset their respective function modules. When resetting
an I/O function via its function reset bit, the software must
ensure that all requests from the processor have been
completed by the I/O function before issuing the reset. For
I/O functions that implement only the non-blocking region
memory space, all requests are completed when the
processor instruction completes. For I/O functions that
implement the blocking region memory space, processor
write requests to the blocking region are posted. Before
resetting the I/O function, software should issue a read
request to a valid address in the blocking region of the I/O
function to flush any posted write requests.

5.18.4 Warm Reset
If an external device needs to be reset when the IP51xx is
reset by internal reasons, the method described in Table
5.18.2 can be used.

One special case is the serial flash device. Serial flash
devices do not have a dedicated reset input pin. They can
be reset by a special reset command sequence or their
internal power-on reset logic. The IP51xx flash controller

does not implement the reset command sequence,
because reset sequences are slightly different for serial
flash devices from different vendors, and some devices
do not have a reset command. Therefore, the IP51xx chip
depends on the flash device to be reset by its own power-
on reset logic.

During the software development stage, if the IP51xx chip
fails to reboot after an internally generated reset, the
following steps should be taken if the user wants to debug
the problem:

1. Connect the debugger to the debug port if it’s not
already connected.

2. Read the Rest Reason register to get the reset
reason information for the last reset.

3. Issue a reset via the Debug Port after the flash
device is no longer busy (by waiting for the
maximum amount of time needed for the flash
command in progress). This will cause the chip to
reset and start instruction fetch at the correct
location. Do not use the external reset, as it will
cause the debug module to lose its configuration,
such as halting the processor upon on internal
reset. After the second reset, the Reset Reason
register would not contain the correct information
regarding the cause of the chip reset.

If debugging is not needed, the user can just use the
external reset to restart booting after a failed reset.

5.18.5 Using Reset Reason Flags
One or more of the reset cause flags may be asserted
after any reset event, and it is the responsibility of
software to arbitrate and properly determine the reason
for the reset. The reset cause information is captured in
the Reset Reasons register (see Table 7-5).

The steps for properly determining the reset cause are:

1. If the POR (Power-on reset) reason bit is asserted, the
chip was reset due to a power-on event and no other reset
cause bit is valid. If this bit is not asserted, go to Step 2. If
the IP51xx is in reset bypass mode, the POR reason bit
should be ignored.

2. If the EXT (External reset) reason bit is asserted, the
chip was reset due to an external reset event (the external
reset pin was asserted) and no other reset cause bit is
valid. If this bit is not asserted, go to Step 3.

3. Read the values of the remaining reset cause bits to
determine the reset reason. It is possible, and legitimate
(but unlikely) that more than one of these bits will be
asserted simultaneously. The asserted bits will provide
the reason for the most recent chip reset.
www.ubicom.com 129

IP51xx Data Sheet – March 28, 2007
5.19 Programming Restrictions

5.19.1 Cancellation Penalties

5.19.1.1 Branch Penalties
When the instruction pipe executes any type of branch,
the corresponding thread will not be able to execute

instructions for some number of otherwise schedulable
instruction slots immediately following such an operation.
The number of potentially lost instruction slots varies with
the type of branch and the frequency with which the
affected thread is scheduled, as shown in Table 5-15.

Note that the penalty is reduced, and eventually
eliminated entirely, as the scheduling frequency of the
affected thread decreases.

5.19.1.2 Instruction Cancellation Hazards
There are a number of cases in which requested read
data exists in the pipeline in a modified state, but is not
available for use via a data bypass path. In these cases,
the instruction requesting the read data is cancelled and
retried at a later time. The following discussion specifies
all such cases, as well as the size of the window in which
such cancellations will take place. The hazard window
size is specified in instruction slots, and is a function of
scheduling frequency.

”Address calculation” hazards occur when an address or
data register is used for address calculation purposes
following an explicit definition of the registers via the
destination operand. Explicit definitions of address
registers via the destination operand of an LEA, PDEC,
MOVEAI, CALL, or CALLI instruction while DST_SEL_EN
is 0 are excluded, since these utilize a data bypass path
that eliminates cancellation hazards.

”CALLI” hazards occur when the source address register
operand of the CALLI instruction is used following an
explicit definition of the register via the destination
operand. As with the previous case, definitions via the
LEA, PDEC, MOVEAI, CALL, or CALLI instructions are
excluded.

”MAC” hazards occur when an ACC0_HI, ACC0_LO,
MAC_RC16, ACC1_HI or ACC1_LO register is read
explicitly by a source 1 operand following an implicit
definition of the same register via the execution of a DSP
or CRCGEN instruction. This hazard also includes cases
in which an ACC0_LO or ACC1_LO register is read
explicitly by the source 2 operand of a DSP instruction
following an implicit definition of the same register via the
execution of a DSP or CRCGEN instruction.

Table 5-16 shows the hazard window as a function of
scheduling frequency.

5.19.1.3 Hazard Cancellation Penalties When an instruction is cancelled due to one of the
hazards described in Table 5-16, the corresponding

Table 5-15 Branch Penalty as a Function of Scheduling Frequency

Type of Branch
Scheduling Frequency

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Correctly predicted taken JMP 3 1 1 0 0 0 0 0
Correctly predicted not taken JMP 0 0 0 0 0 0 0 0
Incorrectly predicted JMP 7 3 2 1 1 1 1 0
CALL 3 1 1 0 0 0 0 0
CALLI 4 2 1 1 0 0 0 0
RET 7 3 2 1 1 1 1 0

Table 5-16 Hazard Window as a Function of Scheduling Frequency

Type of Hazard
Scheduling Frequency

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Address calculation 4 2 1 1 0 0 0 0
CALLI 4 2 1 1 0 0 0 0
MAC 3 1 1 0 0 0 0 0
130 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
thread will not be able to execute instructions for some
number of otherwise schedulable instruction slots
immediately following such an operation. The number of
potentially lost instruction slots varies according to the
type of hazard and the frequency with which the affected
thread is scheduled, as shown in Table 5-17.

Note that, for scheduling frequencies which are low
enough to avoid a particular hazard entirely, the
corresponding penalty is shown to be zero, as there is no
hazard in these cases.

5.19.1.4 Suspend, Breakpoint, Trap, and
Block Penalties

Whenever a thread executes a SUSPEND instruction,
regardless of whether any further outstanding interrupt
conditions exist for that thread, any instructions belonging
to that thread which are scheduled in the following seven
clocks will be cancelled. Similarly, any instructions of the

same thread scheduled in the seven clocks following a
BKPT instruction or an instruction which is trapped will
also be cancelled. The number of instruction slots
cancelled due to a protocol C block on the instruction
(I-Block) and data (D-Block) ports is also shown. The
number of instruction slots cancelled, as a function of
scheduling frequency, is as shown in Table 5-18:

5.19.2 Operations with Delayed Effect

5.19.2.1 Reading Registers Affected by SET
and CLR Registers

Certain status registers are primarily updated by
hardware, but may also be set and cleared by software
that writes to special corresponding SET and CLR
registers. When an instruction modifies a status register
through this mechanism, the result of that modification
becomes visible to subsequent instructions performing an
explicit read of the register a number of instruction slots
later. The number of subsequent slots in which the new
result is not yet visible, as a function of scheduling
frequency, is as shown in Table 5-19.

Table 5-17 Hazard Cancellation Penalty as a Function of Scheduling Frequency

Type of Hazard
Scheduling Frequency

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Address calculation 5 3 2 2 0 0 0 0
CALLI 5 3 2 2 0 0 0 0
MAC 6 3 2 0 0 0 0 0

Table 5-18 Suspend, Breakpoint, Trap, and Block Penalties as a Function of Scheduling Frequency

Type of Penalty
Scheduling Frequency

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
SUSPEND 7 3 2 1 1 1 1 0
BKPT 7 3 2 1 1 1 1 0
Trap 7 3 2 1 1 1 1 0
I-Block 3 1 1 0 0 0 0 0
D-Block 7 3 2 1 1 1 1 0
www.ubicom.com 131

IP51xx Data Sheet – March 28, 2007
5.19.2.2 Reading Registers Affected by
BKPT and SUSPEND Instructions

The BKPT instruction affects the MT BREAK and MT
DBG ACTIVE registers, while the SUSPEND instruction
affects the MT ACTIVE register. When one of these
instructions executes, the effect on the corresponding
register(s) becomes visible to subsequent instructions
performing an explicit read of those registers a number of
clocks later. The number of subsequent clocks in which
the new result is not yet visible is as shown in Table 5-20.

5.19.2.3 Source and Destination Thread
Number Selects

When the source or destination thread number or enables
are modified in the CSR (either through the SETCSR
instruction or through other means), the effect of this
operation on address calculations is not seen until six
clocks later. This means that any instructions executed in
the five clocks immediately following such a CSR update
will not be affected. The number of subsequent instruction
slots in which the new source and destination select
values are not yet visible to address calculation
operations, as a function of scheduling frequency, is as
shown in Table 5-21.

Note that the new CSR values become visible to
instructions reading them explicitly immediately. There is
no delay in that case.

5.19.2.4 Operations Affecting Thread
Schedulability

The states of the MT_ACTIVE and MT_DBG_ACTIVE
registers can affect thread schedulability. These registers,
in turn, can be affected by explicit writes to their
associated SET and CLR registers, as well as by the
execution of BKPT and SUSPEND instructions.
MT_ACTIVE can also be affected by writes to
INT_MASK0 and INT_MASK1. There is a delay from each
of these events until the potential effect on thread
schedulability becomes effective. The following specifies
the number of clocks following each of these operations in
which the corresponding effect on thread schedulability
will not yet be effective. Additionally, the “Interrupt
conditions” case specifies the number of clocks from the
assertion of one of the hardware interrupt set signals
entering the processor until a corresponding thread’s
schedulability can be affected.

Table 5-19 SET and CLR Affected Register Delay as a Function of Scheduling Frequency

Type of Register Set and/or Cleared By
Scheduling Frequency

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
INT_STAT0 INT_SET0, INT_CLR0 2 1 0 0 0 0 0 0
INT_STAT1 INT_SET1, INT_CLR1 2 1 0 0 0 0 0 0
MT_BREAK MT_BREAK_CLR 2 1 0 0 0 0 0 0
MT_TRAP MT_TRAP_SET, MT_TRAP_CLR 2 1 0 0 0 0 0 0
MT_ACTIVE MT_ACTIVE_SET, MT_ACTIVE_CLR 4 2 1 1 0 0 0 0
MT_DBG_ACTIVE MT_DBG_ACTIVE_SET, MT_DBG_ACTIVE_CLR 4 2 1 1 0 0 0 0
MT_I_BLOCKED MT_I_BLOCKED_SET, MT_BLOCKED_CLR 4 2 1 1 0 0 0 0
MT_D_BLOCKED MT_D_BLOCKED_SET, MT_BLOCKED_CLR 4 2 1 1 0 0 0 0

Table 5-20 BKPT/SUSPEND Affected Register Delay
Instruction Affected Register Delay (clocks)

BKPT MT_BREAK 1
SUSPEND MT_ACTIVE 2
BKPT MT_DBG_ACTIVE 2

Table 5-21 CSR Modification Delay

Instruction
Modifying CSR

Scheduling Frequency
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8

SETCSR 5 2 1 1 1 0 0 0
Any other 5 2 1 1 1 0 0 0
132 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.19.2.5 Reading the DSP Overflow Bit
In the three clocks immediately following a DSP
instruction, the state of the DSP overflow bit in the CSR
resulting from that instruction is not explicitly readable yet.
To read the overflow bit from an NRT thread, at least three
non-DSP instructions must be executed after the last DSP
instruction, before reading the CSR. If this restriction is
not followed, undefined data will be returned for the
overflow bit.

5.19.3 Explicitly Writing the CSR of a
Running Thread

Writing to the CSR of another running thread is not
permitted. However, writing explicitly to one’s own CSR is
permitted. The following code sequence must be used
whenever the CSR is to be modified, in this case, in order
to prevent corruption of the condition code bits in the CSR:

nop // Wait for implicit CC writes to
flush
nop // and be readable explicitly

move.4 DST, csr// Save old CSR value

(insert code to modify CSR here, keeping saved
CC values)

move.4 csr, SRC1// Write new CSR value

nop // Wait for explicit CC write to flush
nop // and be readable implicitly
nop // 3rd NOP is needed to cover one
superfluous

// CC bypass path

This code sequence will function correctly, regardless of
scheduling frequency. If the intent is to change the values
of the condition code bits explicitly, or if it is not required
that the state of these bits be maintained, then the first
three instructions of this sequence (nop, nop, move.4)
may be omitted.

5.19.4 Instruction Pipe Flushing and
Thread Quiescence

5.19.4.1 Instruction Pipe Flushing
Sometimes, it is necessary for a thread to flush the
instruction pipe of all of its previously-executed
instructions. Doing so ensures that subsequently-
executed instructions will see the effect of any state
directly affected by those instructions being flushed,
including those with delayed effect. On the instruction
pipeline, a pipe flush is defined to be a sequence of 11
NOP instructions. It is highly recommended that an
assembler macro be defined for the pipe flush operation,
rather than hard-coding the sequence, as the definition of
pipe flush will change with future pipelines.

5.19.4.2 Thread Quiescence
For the instruction pipeline, a thread is defined to be in the
quiescent state if none of its instructions is in the pipeline
and none of its instructions will enter the pipeline until after
the pipeline has been emptied of all instructions currently
in it. The following example shows one technique that a
thread may use to place another thread into the quiescent
state:

PIPE_FLUSH // Flush thread-disabling instructions
PIPE_FLUSH // Flush final instructions of other thread

(other thread is in quiescent state here)

PIPE_FLUSH // Flush all instructions from pipe

(insert code to allow other thread to have instructions
scheduled)

Note that there are a number of methods that may be
utilized to prevent the other thread from having additional
instructions scheduled. Two common techniques are to
deassert either the other thread’s MT_EN or
MT_DBG_ACTIVE bit.

5.19.5 Transmit FIFO Occupancy Status
When writing to the transmit fifo, and subsequently
reading the occupancy status of the transmit fifo, at least
three cycles must exist between the instruction which
executes the write and the instruction which executes the

Table 5-22 Thread Schedulability Delay

Operation Delay
(clocks)

Write to MT_EN, MT_HPRI, MT_HRT,
MT_SINGLE_STEP,
MT, MIN_DELAY_EN, MT_MIN_DELAY field,
MT_ACTIVE_SET, MT_ACTIVE_CLR,
MT_DBG_ACTIVE_SET,
MT_DBG_ACTIVE_CLR,
MT_I_BLOCKED_SET,
MT_D_BLOCKED_SET,
MT_BLOCKED_CLR,
INT_MASK_0, INT_MASK_1,
INT_SET0, INT_SET1,
INT_CLR0, or INT_CLR1

10

BKPT or SUSPEND instruction 7
Interrupt conditions 3
www.ubicom.com 133

IP51xx Data Sheet – March 28, 2007
read (i.e., W-INSTR - nop - nop - nop - R- INSTR). Due to
the definition and behavior of the transmit fifo occupancy
status, if an instruction that executes a read immediately
follows an instruction that executes a write, the read will
return the status of the fifo before the write has had the
opportunity to update the occupancy status. Since the fifo
is normally filled when a known amount of space exists,
such as when receiving a watermark interrupt, the need to
fill and then immediately check the fifo should cause no
problem.

5.19.6 Reading Write-Only Registers and
Write-Only Fields

Read operations of purely write-only registers will return
undefined data. Likewise, read operations of readable
registers which contain write-only fields will return
undefined data for the write-only fields.

5.19.7 Writing Read-only Registers and
Read-only Fields

Write operations to purely read-only registers are
disallowed. If an instruction were to write to a read-only
register, a subsequent read of that same register could
trigger an internal processor bypass path, which would
result in the read operation’s falsely returning the data that
was written by the previous write instruction, rather than
the actual register contents. In a protected architecture,
this would be unacceptable. However, the IP51xx is not a
protected architecture, and the required software
restriction is of no consequence to properly written code.
It should also be noted that writes to read-only registers
will have only the previously mentioned effect, and will not
corrupt the actual state of the register. This restriction
affects the following processor registers:

INST_CNT
ROSR
CHIP_ID
INT_STAT0
INT_STAT1
MT_ACTIVE
MT_DBG_ACTIVE
MT_BREAK
MT_I_BLOCKED
MT_D_BLOCKED
MT_TRAP

Additionally, some writable registers contain unused,
read-only bit fields. Writing to these fields is unavoidable.
If software follows the convention of writing to these fields
only values equal to the fields’ reset values, then the
documented reset values will be returned by the hardware
for all read operations to these fields. If this convention is

not adhered to, then the values returned by these fields
are undefined.

5.19.8 Program Memory Access
Instructions
(IREAD/IWRITE/IERASE)

These instructions existed in the IP3000 family, but have
been removed from the IP51xx. For backwards
compatibility, IREAD and IWRITE may be emulated by
MOVE.4 instructions. Also, to maintain backwards
compatibility, the IREAD DATA register has been
retained, and the MEM BUSY bit in the ROSR has been
hard-coded to 0 (not busy).

5.19.9 Multiple Modifications of the Same
Address Register in One Instruction

A single instruction can generate up to three possibly
conflicting modifications of the same address register.
These three modifications could originate from an auto-
incrementing source addressing mode, an auto-
incrementing destination addressing mode, and the
destination itself (targeting the same address register).
Regardless of any conflict, the address register values
actually used in the source and destination address
calculations will be as expected. However, in the case of
a conflict, a simple priority scheme is used to determine
which value is written back to the register itself, as follows:

5.19.10 Reading Instruction Counters
The thread-specific instruction counters are updated as
instructions complete in the write-back stage. Since read
operations are issued much earlier in the pipe, this means
that if a thread reads its own instruction counter, it will be
reading slightly stale data. Specifically, any instructions
executed in the three clocks preceding the read operation,
as well as the read operation itself, will not be represented
in the returned count value.

5.19.11 Reading INT_STAT and MT_ACTIVE
Following Interrupts

When an interrupt occurs, the appropriate INT_STAT bit
is set. Simultaneously, the appropriate threads (if any) are

Priority Value Written Back to Address Register
1 Destination result

2 Auto-incremented address register used for
destination address

3 Auto-incremented address register used for
source address
134 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
activated. While the new state of INT_STAT becomes
visible to software in the clock in which the interrupt
occurred, the new state of MT_ACTIVE does not become
visible to software until one clock later.

5.19.12 Reading and Writing the PCs
A thread’s Program Counter (PC) must not be written until
the corresponding thread is disabled (its MT_EN bit is
cleared) and clear of the instruction pipe. After a thread’s
PC has been updated through software, the PC should
not be read by software during the following four clocks.
Undefined data will be returned during this window.

5.19.13 LEA and PDEC Instructions
LEA and PDEC instructions are handled in two different
ways, depending on the destination. If the destination is
an address register and the DST_SEL_EN field in the
CSR is 0, then the address register being modified may be
used immediately in the following instruction for address
calculation purposes. If the destination is a data register,
or if the destination is an address register and
DST_SEL_EN is 1 (even if DST_SEL points to the current
thread), a subsequent instruction which uses the
destination too soon for address calculation purposes will
be cancelled. These cases fall under the “address
calculation” hazard category in Instruction Cancellation
Hazards (Section 5.19.1.2).

5.19.14 Writing Another Running Thread’s
Address or Data Registers

In the IP3000 family, writing to a non-quiescent thread’s
address or data registers is in violation of the IP3000
architecture specification. In the IP51xx, a thread may
write to another running thread’s address or data registers
by setting the DST_SEL field in its CSR appropriately.
However, due to possible unresolvable data
dependencies in the pipeline between such an operation
and the use of these registers by the affected thread in its
address calculations, instructions of the affected thread
may be cancelled. The functional operation of the affected
thread is guaranteed to be correct. However, its
determinism may be affected. Note that this also applies
to write operations which are executed speculatively (i.e.
writes in the instructions following a conditional branch
instruction).

5.19.15 Operands Affected by Source Select
The settings of the SRC_SEL and SRC_SEL_EN fields in
the CSR are used to override the thread number in thread-
specific direct space addresses for all general source 1
operands. This applies to the following instruction

formats: 1b, 1d, 2, 3, 4a, 4b, 5, 10a, and 10b. This is a
complete list of affected source operand addresses.

Examples of source addresses not affected by source
select include: the source 2 operand, the source 3
operand, address and data registers used by source 1
and destination address calculations, and the source
address register used by the CALLI instruction.

5.19.16 Operands Affected by Destination
Select

The settings of the DST_SEL and DST_SEL_EN fields in
the CSR are used to override the thread number in thread-
specific direct space addresses for all explicit general
destination and restricted (data register only) destination
operands, with the exception of the general destination
operand utilized by the SETCSR instruction. This applies
to the following instruction formats: 1c, 1d, 2, 3, 4a, 4b,
and 6. This is a complete list of affected destination
operand addresses.

Examples of destination addresses not affected by
destination select include: all implicit destinations (i.e.
DSP and CRCGEN instructions), address registers
modified by auto-incrementing addressing modes, and
restricted address register-only destination operands
utilized by CALL, MOVEAI, and CALLI instructions.

5.19.17 Operands Covered by the DCAPT
Write Address Trap

The DCAPT write address trap applies to all explicit
destination operands in the direct or indirect address
spaces, with the following exceptions:

• The destination of MOVEAI
• The destination of LEA and PDEC, when it is an

address register and DST SEL EN is 0
• The destination of CALL
• The destination of CALLI

5.19.18 Writing to Another Thread’s
Registers

A thread may write to another thread’s thread-specific
registers only if that thread is quiescent. One exception to
this rule is the Program Counter (PC). The PC may only
be written to when the corresponding thread is disabled
(MT_EN is 0) and clear of the instruction pipe (a
PIPE_FLUSH should be performed).
www.ubicom.com 135

IP51xx Data Sheet – March 28, 2007
5.19.19 Single-Stepping
It is not possible to single-step an instruction that sets the
MT_DBG_ACTIVE bit of its own thread.

5.19.20 Writing the MT_TRAP_CAUSE
Register

This thread-specific register should be written to by
software only when the corresponding thread is
quiescent.

5.19.21 Serror Traps
If an instruction which addresses the same peripheral with
the source 1 and destination operands encounters any
synchronous error (serror), both source 1 and destination
serror traps will be signalled. In other words, for these
instructions, it is not possible to distinguish source 1
serrors from destination serrors. If, however, the source 1
and destination operands do not address the same
peripheral, then source 1 and destination serrors will be
distinguishable.

5.19.22 Initialization of Address and Data
Registers

The IP51xx processor does not initialize its address and
data registers on hardware reset (unlike the IP3000
processor). These registers should be initialized by
software. Not doing so may result in speculative read
accesses to random addresses. While any such accesses
will be cancelled by the processor, they may result in
unwanted side-effects in certain peripherals (for example,
an unnecessary speculative cache line fill).

5.19.23 Performing a Hard Reset through the
Debug Port

While the debug port implements a chip reset command,
this command may be ineffective, if the on-chip PLL
driving the processor clock has been disabled. In such a
case, the debug dongle will have to reset the IP51xx by
causing the external reset input signal to be cycled. If it is
desired for the processor to be halted after coming out of
reset, the external host will need to wait after issuing a
hard reset command, before halting the processor. This is
necessary, because a hard reset will also reset the debug
port logic, which will be unable to register a halt command
until after reset is deasserted.

5.19.24 Performing a Soft Reset of Only the
External Memory Subsystem

It is possible to apply a soft reset to the entire external
memory subsystem. This will entail resetting both the
Flash and DDR SDRAM controllers, as the following
sequence shows:

1. Stop all threads that access external memory and
ensure that the pipeline is quiescent of these
instructions.

2. Flush and invalidate the Data Cache by index.
3. Invalidate the Instruction Cache by index.
4. Disable the DDR controller.

(a) Disable DDR auto refreshes and wait for any in-
flight operations to complete.

(b) Reset the DDR controller via the corresponding
I/O Function Reset field.

5. Disable the Flash controller.
(a) Lock out any in-flight Flash accesses.
(b) Wait for any pending operations to complete.
(c) Reset the Flash controller via the corresponding

I/O Function Reset field.
6. Deassert reset to the DDR controller and reapply

DDR configuration.
7. Deassert reset to the Flash controller and reapply

Flash configuration.
8. Restart relevant threads.

The Cache subsystems can be reset along with the
controllers, but the above sequence doesn’t do this.

5.19.25 Sharing Code and Data within the
Same On-Chip Memory Bank

Atomicity of data port dual operand memory accesses to
a code bank is not supported by the hardware. Although
the atomic properties of such transaction are intrinsic
when considering other accesses within the same thread,
this is not the case for accesses from other threads.
Therefore, read-modify-write operations to a code bank
which are initiated on the data port between different
threads are not guaranteed to complete in an easily
deterministic order.

5.19.26 Writing Self-Modifying Code for the
On-Chip Memory

When a non-speculative code bank request is initiated
and acknowledged on the data port, the write request is
posted into a Code Request Buffer. The request remains
pending until the instruction port is able to locate the
appropriate cycle to service the write. While the posted
write request is pending, any instruction port reads from
the same address will return data last written as a
136 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
response (rather than the pending write data). That is, the
instruction port will not block any instruction fetches to the
address of the posted write. Therefore, software that
implements self-modifying code will have to apply the
appropriate programming procedure in order to guarantee
that the instruction fetch of such code occurs after all
posted Code Request Buffer writes are completed.
Therefore, a thread that is modifying code needs to
perform a pipe flush in order to guarantee correct
execution of modified code. Any pending code writes will
be completed after the pipe flush.

5.19.27 Dynamic Modification of the On-Chip
Memory Bank Mask Register

The On-Chip Memory Bank Mask register which is
located in the on-chip peripheral control block specifies
whether a bank is to be used for instruction or data. The
behavior of the On-Chip Memory is undefined if the bank
mask register is changed while executing code or
accessing data from an affected bank. The behavior is
also undefined if the mask is modified while pending code
accesses to the affected bank exist in the Code Request
Buffer. Software must apply the appropriate procedure in
order to guarantee that none of the above conditions are
true while modifying the mask register. Any modification
of the mask register is guaranteed to be in effect after a
pipe flush.
www.ubicom.com 137

IP51xx Data Sheet – March 28, 2007
5.20 Programming Errata
Table 5-23 presents known IP51xx problems and their
workarounds.

Table 5-23 IP51xx Problems and Workarounds
1 TWR programming with TDAL for DDR1
Problem The issue is that a timing parameter called “tdal” has been introduced for some memory parts and is

active when using Auto-Precharge Mode. For certain DDR1 parts, if TDAL is used, then the TWR
timing parameter must be adjusted.

Workaround Program Twr = Tdal - Trp for DDR1 devices which utilize TDAL timing parameter.
2 Port A: 250 MHz clock divider peripheral on pin PA5 cannot be configured when Function 1 is

selected.
Problem When Port A, Function 1 is selected, the 250 MHz clock divider peripheral output cannot be

controlled. The Port A Function Control 1 register field that configures the divide value is also
assigned to the Flash Controller FC Instruction field. A clock output will still be available on pin PA5,
but should not be used, as it cannot be programmed.

Workaround None
3 When an instruction reads from locations in an I/O blocking region that has read side-effect (reading

from the location alters the state of the I/O function) — for example, FIFOs in the I/O blocking region
as in the USB controller — it may return an incorrect result.

Problem When the processor retries a read transaction to a blocking region, and the retry is canceled later, the
IOPCS restores its states back to the states before the retry transaction was received. However,
under the condition when the retry is not followed by another request to the blocking region within the
protocol C cancellation window, the IOPCS incorrectly restores the retry transaction address back to
the previous transaction address. The end effect is that, when the transaction is retried again, the
IOPCS will treat it as a new transaction, and pass the retry onto the I/O function. Therefore, the I/O
function can receive multiple requests for the same processor instruction. If the target read address
has read side-effect, the states in the I/O function will be unintentionally updated.

Workaround When an instruction reads from locations in an I/O blocking region that has read side-effect, it must
not use cache/DDR as its destination. When reading from the same address in the blocking region
consecutively, only the first read instruction to that address cannot use cache/DDR destinations. The
subsequent read instructions can safely target cache/DDR as the destination. For example, the
following code will execute correctly:

; a0 points to an IO blocking region address
; with read side effect
; a1 points to DDR address
; move the first data to a data register
move.4 d0, (a0)
; move data from the register to DDR
move.4 (a1)4++, d0
1:
; move directly to DDR
move.4 (a1)4++, (a0)
.. ; instructions that do not read/write IO blocking
.. ; region addresses
jmpcc 1b

The performance impact of this problem is believed to be minimal. The locations in the I/O blocking
region that have read side-effect are either status registers or FIFOs. Data in status registers are
temporary. Software never needs to move them into cache before processing them. For FIFO data,
only one additional instruction is needed for moving a block of data.

4 Access to an unimplemented I/O NBR space may not trigger a trap.
138 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Problem The I/O subsystem is designed to cause a trap when a request is targeting at an unimplemented
NBR address. However, the part of the unimplemented address space, address between offset 0x80
to 0x800, does not trigger a serror. If a thread issues a validated request to the above address range,
no serror nor ack will be asserted for the request. The effect is that the thread will be blocked
indefinitely. Speculative instructions that are canceled later do not cause this problem.

Workaround None
5 High-Speed USB Controller: EP1-5 packet loading may fail when a packet is in the EP0 FIFO
Problem If a packet has been loaded into the EP0 FIFO and then one of the endpoints EP1-5 loads a packet

into its FIFO, an incorrect RAM write address is used, causing data corruption. The problem is seen if
the packet size to be loaded into the EP1-5 FIFO is not a multiple of 4 bytes, and if software loads the
EP1-5 FIFO before the “transmit confirmation” interrupt occurs.

Workaround When sending data on endpoint 0, software must wait for the “transmit confirmation” interrupt before
loading any other endpoint’s FIFO.

6 High-Speed USB Controller: Peripheral mode: The DataEnd bit is not cleared after incomplete status
stage and receipt of a new SETUP packet.

Problem The DataEnd bit is not cleared after an incomplete status stage and when the core receives a new
SETUP packet. This will cause a STALL response in a subsequent data stage. The following
demonstrates the problem:

1. SETUP-ACK
2. OUT DATA(RX)-ACK(Set DataEnd)
3. IN Status Stage - No response from Host
4. SETUP-ACK

Workaround Software should clear DataEnd on receipt of IRQ with SentStall bit set.
7 High-Speed USB Controller: Split transaction data incorrectly concatenated in RAM
Problem When acting as a high speed host, and receiving multiple packets of a ISO IN split transaction, to the

same endpoint, of a size other than modulo 4, the RAM controller may incorrectly concatenate the
data in RAM, causing corruption. Isochronous data from a full-speed device behind a hub may be
corrupted.

Workaround None
8 High-Speed USB Controller: Data corruption when AutoSet is enabled and Tx- PktRdy is set on

different EPs at the same time, while USB is accessing the RAM.
Problem When multiple Endpoints are used, and if the CPU sets the TxPktRdy just after another Endpoint

(AutoSet is enabled) completes, and the FIFO load and USB are accessing the FIFO simultaneously,
the transferred data will be corrupt.

Workaround Do not use AutoSet.
9 SPI slave tri-state mis-wired
Problem The SPI (Serdes) slave tri-state control signal is incorrectly wired. The tri-state control should be

wired to the SPI Data-Out signal (TXP / bit 6), but is instead wired to another Serdes port signal
(TXPE / bit 7). This bug affects both Serdes ports on the IP51xx. The effect of this bug is:

1. When using SPI slave, bit-7 (TXPE) of the port is usable only as a GPIO input.
2. When using SPI slave, the IP51xx cannot be used in a multi-drop SPI environment.

Workaround When the Serdes is configured as an SPI slave, Serdes/SPI can be used only in a point-to-point
environment (as opposed to a multi-drop environment). Additionally, when the Serdes is configured
for use as a SPI slave, bit 7 of the Serdes port can be used only as a GPIO input and not as a GPIO
output.

Table 5-23 IP51xx Problems and Workarounds (continued)
www.ubicom.com 139

IP51xx Data Sheet – March 28, 2007
10 PCI TAR_WRITE_OP_DONE interrupt doesn't work.
Problem The PCI TAR_WRITE_OP_DONE interrupt fires at the beginning instead of the end of a target write

transaction.
Workaround For the IP51xx to handle write transactions as a PCI target efficiently and with good performance, a

PCI driver would need both the RX_FIFO_WATERMARK interrupt and the TAR_WRITE_OP_DONE
interrupt. Since the latter interrupt is not useful in its current implementation, and since PCI burst
lengths are variable, the driver will need to poll the RX_FIFO_LEVEL indicator to determine when it
reaches zero. Extra care must be taken when polling to ensure that no data is ‘in flight’ through the
PCI core logic even though the RX_FIFO_LEVEL reports zero. This is especially true for small PCI
bursts. To be absolutely certain, additional polling may be necessary once zero is initially detected.

Table 5-23 IP51xx Problems and Workarounds (continued)
140 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.21 Writing Assembly Code
This section summarizes some of the most useful
features of gas, the GNU assembler. It also presents the
extensions made to gas for the IP5000 family,
ip5k-elf-gas. Complete documentation of gas is
available at http://www.gnu.org/manual/.

5.21.1 Comments, Constants, and Symbols

5.21.1.1 Comments
Comments can occur after a semicolon:

move.4 D1, #3 ; this is a comment
;this whole line is a comment

Comments can also be enclosed in C-style comment
delimiters, such as:

/* this is a comment */

and:

/* this is
a multi-line
comment */

As with C, comments may not be nested.

5.21.1.2 Constants
Constants may be character constants, string constants,
or numeric constants.

Character Constants
A character constant is a single character enclosed in
single quotes, such as ‘f’, which is a byte with the value
102 (decimal) corresponding to its ASCII code.

To use a character with special meaning, or a character
outside of the standard ASCII printing characters, a
backslash (\) is used to indicate a representation for the
character, as shown in Table 5-24.

String Constants
A string constant consists of one or more characters
enclosed in double quotes, such as “Ubicom”.

Numeric Constants
A numeric constant is an integer. By default, it is
interpreted as a decimal number. To express it in binary,
prefix the value with 0b; for example 0b01101001. To
express it in hexadecimal, prefix the value with 0x, as in
0x9F. Hexadecimal digits may be either upper or lower
case.

Table 5-25 lists the notation syntax for constants.

5.21.1.3 Symbols
A symbol is a name for any nameable object, such as
labels and constants. A symbol consists of one or more
characters from the set of letters, digits, period (.), and
underscore (_). A symbol may not begin with a digit.

Table 5-24 Assembly Special Characters

Representation Value Character
\b 0x08 Backspace (control-H).

\f 0x0C Form Feed (control-L).

\n 0x0A New line (control-J).

\r 0x0D Carriage return (control-M).

\t 0x09 Horizontal tab (control-I).

\xNN 0xNN NN is the ASCII code (in
hexadecimal) for the
character — for example,
\x09 is equivalent to \t

\\ 0x5C Backslash (\).

\" 0x22 Double Quote (").

Table 5-25 Notation Syntax
Notation Example

dec 65

bin 0b01000001

hex 0x41 or 0X41

octal O101

ascii ‘A’
www.ubicom.com 141

IP51xx Data Sheet – March 28, 2007
Symbols are case-sensitive, so abc is distinct from aBc.
Symbols may not be reserved words (see Table 5-29 for
a list of the reserved words).

To make a symbol visible outside the file where it is
defined, a .global directive is required. For example:

.global _gl_symbol
_gl_symbol:
 add.4 D3, D1, D0
 calli RP, 0(RP)

The .func directive emits debugging information to
denote function name, and is ignored unless the file is
assembled with debugging enabled. Only the --gstabs
debugging option is currently supported.

Label is the entry point of the function. If the label is
omitted, then the function name prepended with the
“leading char” is used. The “leading char” is usually “_” or
nothing, depending on the target. All functions are
currently defined to have void return type. The function
section must be terminated with the .endfunc directive.
For example:

.global reset_vector

.func reset_vector,reset_vector
reset_vector:
; Emergency space
 .rept 16
 .word 0xFFFFFFFF
 .endr
; Null check (debug)
 cmpi SP, #0
 jmpne.f _null_function_pointer
 .endfunc

5.21.2 Directives
ip5k-elf-gas has four directives in addition to the standard
list:

.word – four bytes.

.long – four bytes.

.half – two bytes.

.short – two bytes.

Please consult the gas documentation for details on other
directives.

5.21.3 Operators
Operators are arithmetic functions, like + or %. Prefix
operators are followed by an argument (see Section
5.21.3.1). Infix operators appear between their arguments
(see Section 5.21.3.2). Operators may be preceded
and/or followed by white space.

5.21.3.1 Prefix Operators
Prefix operators are shown in Table 5-26. ip5k-elf-gas
has two prefix operators, each taking one absolute
argument.

5.21.3.2 Infix Operators
Infix operators take two arguments, one on either side of
the operator. Operators have precedence, but operations
with equal precedence are performed left to right. Apart
from + or -, both arguments must be absolute, and the
result is absolute.

Table 5-26 Prefix Operators
Prefix Description
– Complement negation.
~ Bitwise not (complement).

Table 5-27 Infix Operators
Highest Precedence:

* Multiplication.
/ Division. Truncation is the same as the /

operator of C.
% Remainder.
< Less.

<< Shift Left. Same as the << operator of C.
> Greater.

>> Shift Right. Same as the >> operator C.
Intermediate Precedence:

| Bitwise Inclusive OR.
& Bitwise AND.
ˆ Bitwise Exclusive OR.
! Bitwise OR NOT.

Lowest Precedence:
+ Addition. If either argument is absolute, the

result has the section of the other argument.
Arguments from different sections may not add
together.

– Subtraction. Only meaningful to add or subtract
the offsets in an address; there can only be a
defined section in one of the two arguments.
142 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
5.21.4 Assembly to C Calling Conventions
In order to call a C function called main from assembly
routine. The following instructions must be executed:

moveai A2, #%hi(_main)
lea.4 A2, %lo(_main)(A2)
calli RP, 0(A2)

5.21.5 Operand Qualifiers
Ip5k-elf-gas extends the GNU assembler to qualify
operands with special syntax. There are a lot of
occurrences of operand qualifiers throughout the
assembly source files in the Ubicom SDK. Operand
qualifiers are interpreted as shown in Table 5-28.

Note: New operand qualifiers might be added in future releases of the SDK.

Table 5-28 Operand Qualifiers

Qualifier Addressing Mode Description Example
%hi Immediate for moveai

instruction
Extracts bits 30:7 of
the operand

moveai An, #%hi(symbol_name)

Immediate for movei
instruction

Extracts bits 31:16 of
the operand

movei Dn, #%hi(symbol_name)

%lo Register Indirect with 7-bit
unsigned offset

Extracts bits 6:0 of the
operand

move.4 Dn,
%lo(symbol_name)(An)

Indirect for calli
instruction

Extracts bits 6:0 of the
operand

calli An,
%lo(symbol_name)(An)

Immediate for movei
instruction

Extracts bits 15:0 of
the operand

movei Dn, #%lo(symbol_name)

%lo18 Indirect for calli
instruction

Extracts bits 17:2 of
the operand

calli An,
%lo18(symbol_name)(An)

%bit Immediate Log2 (operand).
Converts the bit mask
position into a bit
number that can be
used by bset or
bclr instruction.

bset Dn, Dn,
#%bit(0x00000100)
www.ubicom.com 143

IP51xx Data Sheet – March 28, 2007
5.21.6 IP5K-Specific Reserved Words
Table 5-29 shows all of the instruction mnemonic names and special-purpose register names. Both the uppercase and
lowercase versions of these names are reserved words. Reserved words may not be used as symbolic names.

Table 5-29 CPU Reserved Words
add.2 bset lea.2 madd muls shftd

add.4 btst lea.4 msub mulu shmrg.1

addc call lsl.2 msuf nop shmrg.2

and.2 calli lsl.4 merge not.2 sub.2

and.4 cmpi lsr.2 move.1 not.4 sub.4

asr.2 crcgen lsr.4 move.2 or.2 subc

asr.4 ext.1 macf move.4 or.4 suspend

bclr ext.2 macs moveai pdec xor.2

bfextu jmpcc.c.p macu movei ret xor.4

bkpt lea.1 macus mulf setcsr
144 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.0 Peripherals

6.1 Overview
The IP51xx supports a number of I/O ports, each of which
can be configured as general purpose I/O or assigned to
a specific function. The available hardware functions
include support and control functions, such as clock
generation and interrupts, as well as functions for allowing
connections to specific on-chip I/O controller/accelerator
units.

6.2 Shared Port Architecture
All ports share a common base architecture. Depending
on the specific requirements of the port, each port can be
composed of:

• A register set to control and monitor the port
functions.

• Data FIFOs for efficient movement of transmit and
receive data.

• One or more independently operating function blocks.
• Muxes that control function selection.

All ports share these common features:

• Configurable to operate as GPIO only.
• FIFO interface for data, independent of protocol.

Alignment and packing of data within the FIFO word
is function specific. Actual size is port specific.

• External clock sources available.

6.2.1 Port Registers
Port registers are used for function selection, setting
function parameters, function control, and reporting
function and port status. Port specific register definitions
are provided beginning in Section 7.6.

6.2.2 Interrupts
Each port has four registers that participate in interrupt
control for that port:

• Interrupt Status Register
• Interrupt Mask Register
• Interrupt Set Register
• Interrupt Clear Register

6.2.3 FIFO Management
The FIFOs are initialized by asserting one of the set bits
TX FIFO Reset or RX FIFO Reset.

The TX Underflow and RX Overflow Interrupts are
provided to inform software of attempts to transmit when
the transmit FIFO is empty or to receive when the receive
FIFO is full.

At any time, software can determine how full the transmit
and receive FIFOs are by examining the FIFO Level
register.

To help avoid overflow or underflow conditions, the
concept of FIFO watermarks is implemented. Software
uses control registers to set the FIFO Watermark level.
Hardware uses the FIFO Watermark interrupt to inform
software when a watermark level has been reached.

If a transmit FIFO Watermark Interrupt, or a receive FIFO
Watermark Interrupt has occurred, and the appropriate
action has not been taken to address the interrupt (i.e., fill
the transmit FIFO or empty the receive FIFO) the interrupt
will persist against any attempt by software to clear the
interrupt. (The mask bit must be set to cause an interrupt.)

The transmit FIFO watermark interrupt will clear
automatically when the FIFO occupancy level is higher
than the transmit FIFO watermark value. The receive
FIFO watermark interrupt will clear automatically when
the FIFO occupancy level is lower than the receive FIFO
watermark value.

6.2.3.1 Receive FIFO Selection, Behavior
and Restrictions

A second receive FIFO is installed in those I/O ports that
have a function needing a second FIFO. Where only one
receive FIFO is installed in an I/O port, the receive FIFO
is installed as FIFO 0.

Access to a specific receive FIFO is controlled through the
Receive FIFO Select bit (Function Select[3]). Setting this
bit to 0 causes all accesses to the receive FIFO (reset,
status, data) to reference receive FIFO 0. Setting this bit
to 1 causes receive FIFO accesses to reference receive
FIFO 1.

An interrupt that was set due to the action of one FIFO will
remain set after the Receive FIFO Select bit is changed to
select the other FIFO, even if the newly selected FIFO is
not asserting this interrupt. If a FIFO is filled beyond the
level set by the watermark trigger level and that FIFO is
not currently selected, an interrupt will not be asserted
until that FIFO has been selected through the Receive
FIFO Select bit. When a receive FIFO overflows or a
transmit FIFO underflows, all other FIFO status
information is undefined, and software must reset the
FIFO.
www.ubicom.com 145

IP51xx Data Sheet – March 28, 2007
Table 6-1 Port Function Summary

Port Port
Width

TX FIFO
Size

RX FIFO
Size Function 0 Function 1 Function 2 Function 3

A 8 8 x 32 N/A GPIO Flash / INT /
Clock

GPIO / INT /
Clock

GPIO / INT

B 20 32 x 36 32 x 36 GPIO PCI --- ---
C 32 N/A N/A GPIO PCI

(I/O only)
Reserved ---

D 12 16 x 32 16 x 32 GPIO Serdes
(240 MHz)

Reserved ---

E 8 16 x 32 2 - 16 x 32 GPIO Serdes
(250 MHz)

Reserved MII / RMII

F 16 16 x 32 2 - 32 x 32 GPIO GMAC
(MII / RMII /
RGMII)

--- ---

G 32 N/A N/A GPIO DDR
SDRAM

--- ---

H 10 N/A N/A GPIO DDR
SDRAM

--- ---

I 12 N/A N/A GPIO N/A Reserved MII (Port E
Extension)

USB
Port

2 N/A N/A N/A High-Speed
USB

N/A N/A
146 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.3 External Flash Controller (FC)
The External Flash Controller (FC) manages the interface
between the IP51xx and an external serial flash device on
Port A. Table 6-2 shows how the external flash interface
signals are assigned to the port pins, using a simple SPI
interface. Section 7.7.1 gives a detailed description of the
port registers used for the FC.

The FC provides shared access to the external serial flash
device from the caches and the processor (through the
port-registers).

The IP51xx supports the following families of external
serial flash devices:

• Atmel 25 series devices
• SST 25 series devices
• AMD 25 series devices
• ST 25 series devices

All of these flash devices are Read compatible for basic
read operations. For programming, each device vendor
uses its own variant command set with its own
peculiarities. It is left to software to appropriately program
the specific device through the port-register interface.

The following are restrictions imposed by the design of
this flash controller:

• Flash Device Chaining: No chaining of external serial
flash devices on the SPI bus is supported.

• Maximum Device Size: The address size for the
supported devices is 24 bits. As such, the maximum
size device that can be supported using this
addressing scheme is 16 Mbytes.

6.3.1 Cache Read Interface
Data accesses from the instruction and data caches are
automatically triggered by cache misses to the flash
address space. The caches request a cache line, and the
FC constructs the data transaction to the external device.
The FC collects a full 32-byte cache line from the external
device and returns it to the requesting cache. Arbitration
between the instruction and data caches for the FC is
round-robin.

6.3.2 Port-Register Read / Write / Erase
Interface

The port-registers (see Section 7.7.1) provide an interface
for the processor to construct arbitrary SPI transactions,
to be passed along to the SPI flash device by the FC.

6.3.3 Arbitration
The FC is responsible for arbitration between cache and
processor transactions to the external flash device.
Priority is always given to processor requests, unless an
outstanding request from a cache is being processed at
the time of the processor request. In that case, the
processor will get the external SPI bus as soon as the
cache transaction completes. Through the port-registers,
the processor may lock-out the caches from accessing
the external flash device. This is desirable during flash
erase or write sequences of transactions.

Table 6-2 External Flash Interface Signals

Signal Port A
Pin

Port A
I/O Description

SI 0 I Serial Data Input
SO 1 O Serial Data Output
SCK 2 O SPI Clock
CE_N 3 O Chip Select
www.ubicom.com 147

IP51xx Data Sheet – March 28, 2007
6.4 External DDR SDRAM Controller
The External DDR SDRAM controller manages the
interface between the IP51xx and an external DDR
SDRAM data memory on Ports G and H.

Table 6-3 shows how the external DDR SDRAM interface
signals are assigned to the port pins. Signals ending with
“_N” are active low.

In addition to the pins on Ports G and H, there are several
pins that are dedicated to the DDR SDRAM (not subject
to Function Select). These are shown in Table 6-4.

Registers used for configuration of the DDR SDRAM
controller are located in both the Port G non-blocking
region and the Port G blocking region.

In order to use an External DDR SDRAM with a 16-bit
data bus, Function 1 must be selected on both Port G and
Port H. For a device with an 8-bit data bus, only Port G
Function 1 need be selected.

Section 7.12.1 gives a detailed description of the port
registers used for the DDR SDRAM Controller.

6.4.1 DDR SDRAM Controller Features
The DDR SDRAM Controller provides these features:

• Supports DDR SDRAM sizes from 128 Mbits to
1 Gbit.

• Supports DDR1 and DDR2 device types.
• Supports DDR devices with 8 (x8) or 16 (x16) bit

data buses.
• Supports DDR clock frequencies from 120 MHz

to 200 MHz.
• Does not support Self Refresh mode.

Table 6-3 DDR SDRAM Port Signals

Signal Port
Pin I/O Description

ADDR[13] G0 O

Address pins for read / write

ADDR[12] G1 O
ADDR[11] G2 O
ADDR[09] G3 O
ADDR[08] G4 O
ADDR[07] G5 O
ADDR[06] G6 O
ADDR[05] G7 O
ADDR[04] G8 O
ADDR[03] G9 O
ADDR[02] G10 O
ADDR[01] G11 O
ADDR[00] G12 O
ADDR[10] G13 O
CS_N G14 O Chip Select
CAS_N G15 O Column Address Strobe
BA2 G16 O

Bank Select AddressBA1 G17 O
BA0 G18 O
RAS_N G19 O Row Address Strobe
WE_N G20 O Write Enable
CKE G21 O Clock Enable
DM / LDM G22 O Data Mask /

Lower Data Mask
DQ[7] G23 I/O

Read / write data
DQ[6] G24 I/O
DQ[5] G25 I/O
DQ[4] G26 I/O
LDQS G27 I/O Lower Data Strobe
DQ[3] G28 I/O

Read / write data
DQ[2] G29 I/O
DQ[1] G30 I/O
DQ[0] G31 I/O
UDM H0 O Upper Data Mask
DQ[15] H1 I/O

Read / write data
DQ[14] H2 I/O
DQ[13] H3 I/O
DQ[12] H4 I/O

UDQS H5 I/O Upper Data Strobe
DQ[11] H6 I/O

Read / write data
DQ[10] H7 I/O
DQ[09] H8 I/O
DQ[08] H9 I/O

Table 6-4 Dedicated DDR SDRAM Interface Signals
Signal I/O Description

DDR_CAL I/O Calibrator pin for input and output
impedance calibration

DDR_CLK O Clock output to DDR SDRAM
DDR_CLKN O Clock output to DDR SDRAM

(inverted)
DDR_CLKFB I Clock input from DDR SDRAM
DDR_CLKFBN I Clock input from DDR SDRAM

(inverted)
DDR_ODT O Output to DDR SDRAM

Table 6-3 DDR SDRAM Port Signals (continued)

Signal Port
Pin I/O Description
148 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.5 Serializer/Deserializer (Serdes)
The IP51xx has two Serdes units, which support a variety
of serial communication protocols, including GPSI, SPI,
UART, and USB (only USB Low Speed and Full Speed
modes are supported on the Serdes). By performing data
serialization / deserialization in hardware, the CPU
bandwidth needed to support serial communication is
greatly reduced, especially at high baud rates. Providing
two units allows easy implementation of protocol
conversion or bridging functions between the two high-
speed serial interfaces.

One Serdes unit is associated with Port D, and one with
Port E. The reference clock for the Port D Serdes is
240 MHz, and the reference clock for the Port E Serdes is
250 MHz. Each Serdes unit uses up to 8 external digital
signals shown in Table 6-7. Not all signals are used in all
protocol modes. Refer to Table 6-6 for details on signal
pin usage in various protocol modes. The mapping of
these signals onto the port pins is shown in Table 2-8 and
Table 2-9.

Serdes Registers and Interrupts

Section 7.9.1 gives detailed descriptions of the registers
and interrupts used by the Serdes units.

6.5.1 Serdes TX/RX Buffers
RX FIFO

Received data is placed into the port’s RX FIFO. The
Serdes asserts the RXBF interrupt to indicate when new
data is available from the FIFO (the interrupt mask bit
must be set to cause an interrupt). The RX FIFO Overflow
Interrupt indicates when the receive FIFO becomes full
during receive, and the RX FIFO Watermark Interrupt
indicates when the receive FIFO level meets or exceeds
the receive FIFO watermark trigger level.

The TXBUF Register Field

The 16-bit TXBUF field of the Function Control 2 register
is for loading data to be transmitted. Asserting
TXBUF_VALID in the Interrupt Set register signals to the
Serdes that the data in TXBUF is ready to be transmitted.
The Serdes asserts the TXBE interrupt to indicate when
the data has been transmitted and the register is ready to
be loaded with new data (the interrupt mask bit must be
set to cause an interrupt).

6.5.2 Serdes Configuration
Software prepares a Serdes unit to receive data by
programming the receive shift count register field
(RXSCNT) and the clock divider (CLKDIV) appropriately

for the selected protocol. When the number of bits
received equals the value of RXSCNT, the received data
is loaded into the RX FIFO.

In GPSI or USB mode, when an EOP is detected, the
RXCTR register field is loaded with the number of bits
actually received (with the exception of the last transfer),
the RXEOP interrupt is asserted, and the data bits are
loaded into the RX FIFO (the interrupt mask bit must be
set to cause an interrupt). For details concerning the last
transfer, refer to Section 7.9.1.11.

The TXP and TXM signals correspond to the differential
outputs of the USB bus. Other serial protocols require
only one output pin, which is TXP by default.

For transmitting, software must specify the number of bits
to transmit (in the TXSCNT register field), load the data
into the TXBUF register, and assert TXBUF_VALID to
signal availability of new data. This data is then
transferred to an internal register, from which it is serially
shifted out to the transmit logic. The TXBE interrupt is
asserted when the data has been transferred from the
TXBUF register (the interrupt mask bit must be set to
cause an interrupt).

When there is a transmit buffer underrun event (i.e. all of
the data has been shifted out from the internal register,
but the TXBUF register has not been reloaded), an EOP
condition is generated on the TXP and TXM outputs. The
TXEOP interrupt is asserted when an underrun event
occurs (the interrupt mask bit must be set to cause an
interrupt).

For protocols other than USB, the EOP generator is
bypassed.

6.5.3 Protocol Modes
Table 6-5 shows the protocols selected by the PRS bits in
the MODE field of the Function Control 0 register. The
selection of protocol affects which registers and register
fields are used, for example the RSYNC field of the
Function Control 1 register is only used in the USB mode.
The protocol mode also affects the signal usage, as
shown in Table 6-6. Pins not used for protocols can be
used for general I/O. Table 6-7 provides more information
about each signal.
www.ubicom.com 149

IP51xx Data Sheet – March 28, 2007
Table 6-5 Protocol Selection
PRS Mode
0001 Not used
0010 USB Bus
0011 UART
0101 SPI
0110 GPSI

Table 6-6 Serdes Protocol Modes And Signal Usage

Signal
Port D

or
Port E

Pin

Ser-
des

Mode

USB * UART
SPI GPSI

Master Slave Master Slave
RXD 0 RCV (I) RXD (I) DI (I) DI (I) RxD (I) RxD (I)
RXM 1 VM (I)
RXP 2 VP (I) SS (I) RxEN (I) RxEN (I)
CLK 3 SCK (O) SCK (I) RxCLK (I)
TXME 4 TxBUSY (I)
TXM 5 VMO (O) TxCLK/

RxCLK
(O) TxCLK (I)

TXP 6 VPO (O) TXD (O) DO (O) DO (O) TxD (O) TxD (O)
TXPE** 7 OE (O) TxEN (O) TxEN (O)

I: Input, O: Output
* USB is available only on Port D.
** TXPE in SPI slave mode is available only as a GPIO input.

Table 6-7 Serdes Signals
Pin Description

RXD Serial data for USB, UART, SPI and GPSI modes.
RXM Negative-side differential input (USB only).
RXP Positive-side differential input (USB only), Slave Select (for SPI Slave), or data valid (GPSI).
CLK Serial Clock in SPI or GPSI Slave modes.
TXME TxBUSY in GPSI mode.
TXM Negative-side differential output (USB mode), transmit clock (GPSI Slave), or transmit and receive

clock (GPSI Master).
TXP Positive-side differential output (USB mode), or serial data (UART, SPI, and GPSI modes).
TXPE Output enable for external transceiver (USB), or data valid for GPSI mode.
150 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.5.4 USB
The USB on the Serdes Port supports only Low Speed
and Full Speed modes. This is not to be confused with the
dedicated USB port on the IP51xx.

Figure 6-1 USB Interface Example

Compatible USB interface devices include Sipex™
SP5301 and Fairchild™ USB1T20.

The Port D Serdes provides support for USB host and
device modes of operation.

Hardware

To set up the Port D Serdes unit for USB mode, the
received data output of the USB transceiver should be
connected to RXD. The VP and VM pins of the transceiver
are connected to the RXP and RXM pins to allow
detection of the EOP condition. Figure 6-1 shows the
connections required between an external USB
transceiver and the IP51xx. Table 6-8 shows the mapping
of USB signals to the Serdes pins. For additional
hardware configuration information, reference designs
are available on the Ubicom technical support portal for

registered development kit users. Please visit the portal
for the latest information, or contact Ubicom.

Software

The MODE register field must be programmed with values
for the desired USB mode, Full Speed or Low Speed. The
serial I/O clock divider CLKDIV also needs to be
programmed to generate the appropriate frequency
according to the USB submode selection. Table 6-9
shows the serial I/O clock frequencies required for the low
and full speed modes of the USB. Since the clock into the
Port D Serdes is 240 MHz, the Serdes serial clock can be
programmed to 48 MHz for full speed with a divisor of 5
(encoded as 4). A divisor of 40 (encoded as 39) is
required for 6 MHz low-speed USB. Table 6-10 shows the
submode values for selecting the low- or high-speed
modes.

Table 6-8 USB Interface Signal Usage
USB Signal

Name
Serdes

Signal Name
Port D

Pin Direction Description

VP RXP 2 Input Plus-side differential input
VM RXM 1 Input Minus-side differential input

VPO TXP 6 Output Plus-side differential output
VMO TXM 5 Output Minus-side differential output
OE TXPE 7 Output Output enable

RCV RXD 0 Input Receive data
Clock CLK 3 Input External clock input (optional)

+
-

D+

D-
USB Bus

RXP VP

VM

RCV

VPO

VMO

OETXPE

TXM

RXD

RXM

TXP

IP51xx
www.ubicom.com 151

IP51xx Data Sheet – March 28, 2007
In USB mode, the Serdes uses two registers, RSYNC and
SYNCMASK, to detect the sync pattern marking the
beginning of a USB data stream. In order to achieve this,
RSYNC must be programmed with 0x80 and
SYNCSMASK must be programmed with 0xE0.

Receive behavior is controlled by several register fields.
For normal USB operation, USB_SYNC_IGNORE should
be 0, REV_POLARITY_EN should be 0, and RXSCNT
should be set to the desired number of bits received,
usually 8 or 16. BIT_ORDER should be cleared to make
sure receive is performed LSB first. Once the Serdes
matches the USB SYNC pattern, the receive count is
reset to zero and the Serdes receives bits from the line
until either the desired count is received or an EOP is
encountered, at which point the received data is
transferred to the RX FIFO. If more data is coming in, the
procedure will be repeated. Software is responsible for
reading the data from the RX FIFO fast enough to avoid
overflow. When the EOP is received, the Serdes remains
idle until the next match of the SYNC pattern.

Transmit behavior is controlled by several register fields.
For normal USB operation, LOOP_BACK should be 0,
TX_DATA_INV should be 0, and TXSCNT bits should be
set to the number of bits to transmit. Transmit is initiated
by writing the data to the TXBUF register, then asserting
TXBUF_VALID. If the transmit count needs to be
changed, it must be changed before setting
TXBUF_VALID. For continued transmission, the TXBUF
register has to be written before the TXSCNT count is
reached. Otherwise, the Serdes automatically inserts the
EOP signaling.

While receiving data, the clock/data separation circuit
performs NRZI decoding, after which bit unstuffing is
performed. This means every bit after a series of six
consecutive ones is dropped. On transmit, the Serdes

performs bit stuffing, and the clock/data separation circuit
NRZI encodes the data.

Note: While configured for USB mode, the Serdes cannot
be configured to interrupt on carrier status (RXXCRS).

Software must perform the following functions to
implement the USB protocol for a device:

• CRC generation and checking (can be done with the
CRCGEN instruction).

• Detecting reset of the device function, which is
indicated by 10 milliseconds of a single-ended zero
(SE0) condition on the bus.

• Detecting the suspend state, which is indicated by
more than 3 milliseconds of idle. Software must make
sure that the suspend current of 500 µA will be drawn
after 10 milliseconds of bus inactivity.

• Formation of the USB packet by putting the sync, pid,
and data into the transmit data registers and setting
the proper count.

• Endpoint and device management and other higher
level protocol tasks.

Timing Considerations

USB relies on certain timing limitations for error detection
and recovery. Response time requirements are
specifically harder to meet. The ISR for USB must be
carefully structured to satisfy these requirements, and this
is possible because of IP51xx's deterministic ISR
execution times. The time from the SE0 on bus to the
RXEOP indication is about 208 ns. The time from writing
to TX data registers and the data put on the bus is about
125 ns. Software tasks like address, error, CRC checking,
and determining the endpoint response must be carefully
timed and cycle counted to assure that the required timing
limitations are satisfied.

Table 6-9 Required Clock Frequencies for Serial I/O
Clock in USB Mode

Protocol Clock
Frequency

USB Full Speed * 48 MHz
USB Low Speed 6 MHz

* On-chip Serdes USB supports maximum data rates up
to 12 Mbps.

Table 6-10 Submodes for USB
Name Description

SUBM1:0 Submode select for USB mode:
01 = Low-speed USB interface
10 = Full-speed USB interface
152 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.5.5 UART
For UART operation, two internal divide-by-16 circuits are
used. The receive section and the transmit section use
two divided-by-16 clocks that potentially can be out of
phase. This is due to the nature of the UART bus
transfers. The receive logic, based on the 16x bit clock,
samples the incoming data for a falling edge. Once the
edge is detected, the receive logic counts 8 clock cycles
and samples the number of bits specified in the RXSCNT
register using the bit clock (which is obtained by dividing
the clock source by 16).

Hardware

Figure 6-2 shows an example circuit to connect the
Serdes in UART mode. Table 6-11 shows the UART
signal to port pin usage.

Software

To set up a Serdes unit for UART mode, select UART
mode in the PRS bits of the MODE register field. This

causes the data to be clocked in after a valid start bit is
detected. Make sure that the polarity selected by the
REV_POLARITY_EN and TX_DATA_INV matches the
polarity provided by the RS-232 transceiver (most of them
are inverted). Make sure the BIT_ORDER is compatible
with the data format (RS-232 uses LSB-first bit order).
The receiver uses 16X oversampling, so select a serial
I/O clock divisor (CLKDIV) that is 16 times the desired
baud rate.

To operate in UART mode, depending on the application,
either transmit or receive can be performed first. In both
cases, the shift count register must be programmed with
a bit count that is appropriate for the format. The bit count
depends on the number of data bits, stop bits, and parity
bits. The start bit is included in the bit count. The receiver
does not check for the presence of stop bits. To detect
framing errors caused by missing stop bits, increase the
receiver’s bit count (i.e., the RXSCNT field) and test the
trailing bit(s) in software.

Figure 6-2 UART Interface Example

Table 6-11 UART Interface Signal Usage
UART

Signal Name
Serdes

Signal Name
Port D or E

Pin Direction Description

RXD RXD 0 Input Receive data
TXD TXP 6 Output Transmit data

Transceiver

RxIN

TxOUT

RS-232

RxOUTRXD

TxINTXP

IP51xx
www.ubicom.com 153

IP51xx Data Sheet – March 28, 2007
6.5.6 SPI
Hardware

Figure 6-3 shows example circuits to connect the Serdes
in SPI mode. Table 6-13 and Table 6-14 show the SPI
signal to port pin usage. Refer to Section 7.9.1 for the
Serdes port register interface.

Configuration

The Serdes can be configured for either master or slave
mode:

SPI_MASTER_SEL = 1: Master
SPI_MASTER_SEL = 0: Slave

The Serdes SCK idle-level (i.e., when SS is deasserted)
can be configured by the SUBM field of MODE (refer to
Table 6-15).

MODE[3] (CPOL) = 0: idle is low
MODE[3] (CPOL) = 1: idle is high

Finally, the Serdes can be configured for the phase
relationship of the DO/DI pins with respect to the SCK
edge:

MODE[2] (CPHA) = 0:
DI will be sampled by this device (the slave) on the
first edge (transition).

MODE[2] (CPHA) = 1:
DI will be sampled by this device (the slave) on the
second edge (transition).

Note: The use of the term “edge” in the above paragraphs
implies any transition, not a specific type of transition (i.e.,
rising or falling). Therefore, “first edge” implies a rising
edge when CPOL=0, and implies a falling edge when
CPOL=1.

In the SPI scheme implemented by Motorola®, which the
IP51xx follows, data being emitted on DO and data being
sampled on DI always occur on opposing edges of the
clock, on either master or slave. Transmitting and
sampling on the same edge of the clock is not supported
by the Serdes.

CPOL, in conjunction with CPHA, determines which clock
edges the Serdes will use to drive and sample data on, as
given by Table 6-12.

When the Serdes is configured as a slave, the state of the
DO line when SS is deasserted is determined by the value
in the RxOUT GPIO register for that pin, which the user
can configure.

Figure 6-3 SPI Interface Examples

Table 6-12 Serdes Output and Sample Configuration
CPOL CPHA

0 0 drive on falling, sample on rising
0 1 drive on rising, sample on falling
1 0 drive on rising, sample on falling
1 1 drive on falling, sample on rising

(SPI Master)
SPI

Slave

GPIO

CLK

RXD(DI)

TXP(DO)

SS

SCK

DO

DI

SS

SCK

DI

DO

(SPI Slave)
SPI

Master

RXP

CLK

RXD(DI)

TXP(DO)

SS

SCK

DO

DI

SS

SCK

DI

DO

IP51xx

IP51xx
154 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Figure 6-4 SPI Signal Timing

Table 6-13 SPI Master Interface Signal Usage
SPI Device

Signal Name
IP51xx SPI

Signal Name
Serdes

Signal Name
Port D or E

Pin Direction Description

SCK SCK CLK 3 Output Serial clock output in master
mode, input in slave mode

DO DI RXD 0 Input Receive data
DI DO TXP 6 Output Transmit data
SS SS GPIO any other Output Slave select pin used in slave

mode only (Master select
handled by software)

Table 6-14 SPI Slave Signal Usage
SPI Device

Signal Name
IP51xx SPI

SIgnal Name
Serdes

Signal Name
Port D or E

Pin Direction Description

SCK SCK CLK 3 Input Serial clock output in master
mode, input in slave mode

DO DI RXD 0 Input Receive data
DI DO TXP 6 Output Transmit data
SS SS RXP 2 Input Slave select pin used in slave

mode only (Master select
handled by software)

1 2 3 4 5 6 7 8

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

SCK CYCLE #1

SCK (CPOL = 0)

SCK (CPOL = 1)

SAMPLE INPUT
(CPHA = 0) DATA OUT

SAMPLE INPUT
(CPHA = 1) DATA OUT

SS (TO SLAVE)
www.ubicom.com 155

IP51xx Data Sheet – March 28, 2007
Table 6-15 Submodes for SPI
Name Description

SUBM1:0 Submode select for SPI mode
00 = Positive clock polarity, receive

on rising edge, transmit on
falling edge

01 = Positive clock polarity, receive
on falling edge, transmit on
rising edge

10 = Negative clock polarity, receive
on falling edge, transmit on
rising edge

11 = Negative clock polarity, receive
on rising edge, transmit on
falling edge
156 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.5.7 GPSI
Hardware

Figure 6-5 shows example circuits to connect the Serdes
in GPSI (General Purpose Serial Interface) mode. Table
6-16 shows the GPSI signal to port pin mapping in Master
mode, and Table 6-17 shows the GPSI signal to port pin
mapping in Slave mode.

Software

GPSI is a general-purpose, point-to-point, full-duplex
serial bus protocol. Only two devices are allowed to exist
on a bus. The GPSI PHY device is responsible for
maintaining bus timing by driving two continuously
running clocks, TxCLK and RxCLK. The device that does

not drive the clocks is the MAC device. The TxEn and TxD
signals are synchronized to the TxClk clock. The RxD and
RxEn signals are synchronized to the RxClk clock.

The COLLISION and TxBUSY signals do not participate
in actual data transfer on the GPSI bus. COLLISION and
TxBUSY provide additional flow control capabilities for the
software device driver. The COLLISION signal indicates
that a PHY device has detected a collision condition. This
signal is useful only when the Serdes is connected to a
PHY device or acting as a PHY device.

The TxBUSY signal is used by a GPSI device to indicate
that the device is currently busy, and that another device
should not attempt to start a data transfer.

Figure 6-5 GPSI Interface Examples

(GPSI Master)
GPSI
Slave

TXPE

TXP

RXP

RXD

TXM

GPIO

GPIO

RxEN

RxD

TxEN

TxD

TxCLK

TxBUSY

COL

RxCLK

TxEN

TxD

RxEN

RxD

TxCLK / RxCLK

TxBUSY

COL

(GPSI Slave)
GPSI

Master

RXP

RXD

TXPE

TXP

TXM

TXME

GPIO

TxEN

TxD

RxEN

RxD

RxCLK

TxBUSY

COL

RxEN

RxD

TxEN

TxD

TxCLK

TxBUSY

COL

OR

Transmit and receive both operate from TxCLK.

CLK TxCLKRxCLK

IP51xx

IP51xx
www.ubicom.com 157

IP51xx Data Sheet – March 28, 2007
Table 6-16 IP51xx GPSI Master Interface Signal Usage
GPSI Slave

Signal Name
IP51xx GPSI
Signal Name

Serdes
Signal Name

Port D or E
Pin

IP51xx’s
Direction Description

TxCLK and
RxCLK

TxCLK and
RxCLK

TXM 5 Output Transmit and Receive clock

TxD RxD RXD 0 Input Transmit data
TxEN RxEN RXP 2 Input Transmit data valid
RxD TxD TXP 6 Output Receive data

RxEN TxEN TXPE 7 Output Receive data valid
TxBUSY TxBUSY GPIO - Output Indicates a data transfer in progress

(handled by software)
COLLISION COLLISION GPIO - Output Indicates a collision at PHY layer

(handled by software)
Note: In GPSI master mode, the TXM Serdes pin should be used by the GPSI slave for both TxCLK and

RxCLK inputs.

Table 6-17 IP51xx GPSI Slave Interface Signal Usage
GPSI Master
Signal Name

IP51xx GPSI
Signal Name

Serdes
Signal Name

Port D or E
Pin

 IP51xx’s
Direction Description

RxCLK TxCLK TXM 5 Input Transmit clock
RxD TxD TXP 6 Output Transmit data

RxEN TxEN TXPE 7 Output Transmit data valid
TxCLK RxCLK CLK 3 Input Receive clock

TxD RxD RXD 0 Input Receive data
TxEN RxEN RXP 2 Input Receive data valid

TxBUSY TxBUSY TXME 4 Input Indicates a data transfer in progress
(handled by software)

COLLISION COLLISION GPIO - Input Indicates a collision at PHY layer
(handled by software)

Table 6-18 Submodes for GPSI
Name Description

SUBM1:0 Submode select for GPSI mode
00 = Receive on rising edge,

transmit on falling edge
01 = Receive on falling edge,

transmit on falling edge
10 = Receive on rising edge,

transmit on rising edge
11 = Receive on falling edge,

transmit on rising edge
158 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.6 Media Independent Interface (MII)
The IP51xx MII controller supports signaling and data
transfer as defined in IEEE 802.3. This includes data
transmit, data receive, and carrier and collision detect.
The MII controller, however, does not support the station
management functions of MII (no MDIO / MDC signaling).
Additionally, this controller implements in hardware most
of the functions of an Ethernet MAC, including packet
filtering based on frame size, transmit CRC generation
and receive CRC checking. Station management is
handled through a different function/port.

Table 6-19 shows how the MII interface signals are
assigned to the port pins. Table 6-20 shows the pin
assignments for Reduced MII (RMII). Section 7.10.2 gives
a detailed description of the port registers used for MII.

When using the MII interface, half of the signals are
available at Port E, and the remaining signals can be
accessed at Port I. Both ports (E and I) must select the MII
function, but only the registers of Port E manage the MII
controller. For RMII, only the pins of Port E are used.

6.6.1 Receive Sequence
The MII receiver moves data from the MII interface to the
receive FIFO and signals exceptional conditions.

For both normal data reception and data reception with
errors, data is moved into the receive FIFO for access by
software. In the case of data reception with errors, a
processor interrupt is generated. For normal interframe
messages as well as for reserved messages, the MII
controller takes no action. For a false carrier message, the
MII receiver asserts the FALSE_CARRIER_INT interrupt.

6.6.1.1 Receive Start
1. The RX_EN bit must be set for the MII receiver to

become active. If RX_EN is set while the RX_DV
signal is active, the MII receiver waits until RX_DV
is deasserted before becoming active.

2. Receiver activity is independent of the state of CRS
(carrier sense).

3. Upon detection of an SFD (Start-of-Frame
Delimiter), the RX_SFD_INT is asserted.

4. At reception of the minimum frame length (32)
number of bytes,
– The RX_PKT_SIZE_THRESHOLD interrupt is

asserted.
– The RX_FIFO_SELECT bit changes to indicate

which receive FIFO is being filled with data from
the current frame.

– The CRC_OK bit no longer reflects the CRC
check from the previous frame and now reflects
the CRC check for those bytes received in the
current frame.

– The RX_BYTE_COUNT field no longer reflects
the count of bytes received in the previous frame,
and now reflects the count of bytes received in the
current frame.

6.6.1.2 Receive
The receiver continues to accept data and move it to the
FIFO as long as RX_DV is active. The receiver does not

Table 6-19 MII Interface Signals

Signal Port E
Pin

Port I
Pin I/O

RX_CLK 0 I
RXD [0] 1 I
RXD [1] 2 I
RXD [2] 3 I
RXD [3] 4 I
RX_DV 5 I
RX_ER 6 I
COL 7 I
TX_CLK 0 I
TXD [0] 1 O
TXD [1] 2 O
TXD [2] 3 O
TXD [3] 4 O
TX_EN 5 O
TX_ER 6 O
CRS 7 I

Table 6-20 RMII Interface Signals

Signal Port E
Pin I/O

REF_CLK 0 I
TXD [0] 1 O
TXD [1] 2 O

TX_EN 3 O
RX_ER 4 I
RXD [0] 5 I
RXD [1] 6 I
CRS_DV 7 I

Table 6-20 RMII Interface Signals

Signal Port E
Pin I/O
www.ubicom.com 159

IP51xx Data Sheet – March 28, 2007
know about the state of the FIFO; software must monitor
the FIFO and remove data to avoid FIFO overflow.

6.6.1.3 Receive End
1. The receiver recognizes deassertion of RX_DV as

the end-of-frame delimiter.
2. The RX_EOP_INT interrupt is asserted at the

termination of receive data, at which time the
receive data is available at the receive FIFO and the
count of received bytes is available in
RX_BYTE_COUNT.

3. In the case of an odd number of nibbles, the byte
count does not include the odd nibble.

4. The CRC is calculated continuously, so the
CRC_OK bit reflects the state of the CRC check at
the time the signal RX_EOP_INT is asserted.

6.6.1.4 Receive Error – RX FIFO Overflow
During a receive FIFO overflow, the MII receiver
continues to receive data and write the data into the
receive FIFO without interruption. At the completion of a
packet during which there was a receive FIFO overflow,
the receive FIFO must be reset (using the RX FIFO Reset
bit of the port’s Interrupt Set register).

6.6.1.5 Receive Error – RX_ER asserted
RX_ERR_INT is asserted each time the MII signal
RX_ER is asserted. The detection of RX_ER does not
affect the reception and movement of data to the receive
FIFO. The detection of RX_ER does not cause the
receive function to terminate.

6.6.2 Transmit Sequence
During transmit, the MII controller moves data to the MII
interface from the transmit FIFO and signals exception
conditions.

6.6.2.1 Transmit Start
1. The first piece of transmit data must be present in

the TX FIFO before starting to transmit.
2. The transmit byte count must be set before starting

to transmit. The behavior with a transmit byte count
of 0 is undefined.

3. The transmit byte count must be present before
TX_START is asserted.

4. Transmission is started when the TX_START bit is
set.

5. While the transmitter is active, assertion of
TX_START produces undefined behavior.

6.6.2.2 Transmit End
1. The transmitter ceases operation after transmitting

the number of bytes in TX_BYTE_COUNT
(TX_BYTE_COUNT + 4 if TX_AUTO_CRC is
enabled in Function Control 0).

2. The transmitter signals completion by raising
TX_EOP_INT.

6.6.2.3 Transmit Error – Collision and Jam
When operating in half duplex mode, if the COL signal is
asserted while the MII controller is transmitting, the MII
controller:

1. Signals detection of a collision by raising COL_INT.
2. Ceases transmitting the user supplied data and

asserts a TX_EOP_INT interrupt.
3. Transmits a jam pattern consisting of the repeating

pattern of 1 0 1 0 … (least significant bit first) until a
total of 32 bits have been transmitted (8 nibbles of
0x5)

4. Ceases transmission of all data.

The three events, COL_INT, TX_EOP_INT, and jam data
transmission, do not occur with deterministic timing, but
do obey the following rules:

1. COLLISION and COL_INT are always asserted
together and are asserted first.

2. TX_EOP_INT can be asserted as early as one core
clock cycle after the assertion of COL_INT and as
late as 8 MII tx_clk cycles after the assertion of
COL_INT but always synchronous to the core clock.

3. Transmission of the jam sequence is always the last
operation to complete.

6.6.2.4 Transmit Error – Premature End of
Data

The MII transmitter has no means to validate the contents
of the TX FIFO. The transmitter continues to remove data
from the FIFO and transmits until it has transmitted
TX_BYTE_COUNT bytes. If the FIFO becomes empty
during transmission, the transmit FIFO asserts an
underflow interrupt.
160 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.7 PCI Interface
The PCI controller manages the interface between the
IP51xx and external PCI devices on Ports B and C.

Table 6-21 shows how the external PCI interface signals
are assigned to the port pins. Signals ending with “_N” are
active low.

Registers associated with normal read and write
operations from / to the external PCI devices are located
in the non-blocking region of Port B. Registers used for
configuration of the PCI controller are located in the Port
B blocking region.

In order to use the PCI interface, Function 1 must be
selected on both Port B and Port C.

Section 7.8.1 gives a detailed description of the port
registers used for the PCI Controller.

Note: The PCI interface in the IP51xx operates always as
a PCI host, and never as a PCI device. The IP51xx can be
either a Master or a Target on the PCI bus.

6.7.1 PCI Interface Features
The PCI interface implements PCI specification 2.2.

General features of the interface are:

• 32-bit data and address bus
• PCI memory space commands
• Master channel FIFO Interface
• Target channel FIFO interface
• PCI configuration registers accessible

from the processor

PCI host-specific features are:

• Support for two external devices on PCI bus
• Programmable PCI clock / reset generator
• Arbiter implementing the following selectable

schemes:
– Round-Robin arbitration (default)
– PCI host priority arbitration

The following features are not supported:

• EEPROM configuration
• Power management interface
• CLKRUN_N protocol
• BIOS ROM interface
• Target channel register interface
• PCI I/O space commands

Table 6-21 PCI Port Signals

Signal Port
Pin I/O Description

DEVSEL_N B0 I/O Device select output. As an
input, it indicates that a
selected target device has
decoded an operation.

PERR_N B1 I/O Parity error
STOP_N B2 I/O PCI stop signal
SERR_N B3 I/O System error
TRDY_N B4 I/O Target ready
FRAME_N B5 I/O PCI frame signal
IRDY_N B6 I/O Initiator ready
PAR B7 I/O Parity signal
CBE[0] B8 I/O

Command / Byte Enable
(Byte Enable is active low).

CBE[1] B9 I/O
CBE[2] B10 I/O
CBE[3] B11 I/O
REQ0_N B12 O Request PCI bus 0. Applies

only when IP51xx is Master.
GNT0_N B13 I PCI bus 0 granted. Applies

only when IP51xx is Master.
REQ1_N B14 O Request PCI bus 1. Applies

only when IP51xx is Master.
GNT1_N B15 I PCI bus 1 granted. Applies

only when IP51xx is Master.
RST_N B16 I Reset input
CLK B17 I PCI clock input
CLK_OUT B18 O PCI clock output
INTA B19 O Interrupt line open collector

driver enable
AD[00:31] C[0:31] I/O 32- bit address / data bus
www.ubicom.com 161

IP51xx Data Sheet – March 28, 2007
6.7.2 PCI Bus Commands
Table 6-22 lists the PCI bus commands supported by the
IP51xx. The table shows, for both Master and Target
modes, whether a command is supported, not supported,
or aliased to another command.

Table 6-22 PCI Bus Commands
CBE[3:0] Command PCI Master PCI Target

0000 Interrupt
Acknowledge Yes Ignored

0001 Special Cycle Yes Ignored
0010 I/O Read Yes Yes
0011 I/O Write Yes Yes
0100 Reserved No Ignored
0101 Reserved No Ignored
0110 Memory Read Yes Yes
0111 Memory Write Yes Yes
1000 Reserved No Ignored
1001 Reserved No Ignored
1010 Configuration

Read Yes No

1011 Configuration
Write Yes No

1100 Memory Read
Multiple

Yes Aliased to
Memory
Read

1101 Dual Address
Cycle

No Ignored

1110 Memory Read
Line

Yes Aliased to
Memory
Read

1111 Memory Write
Invalidate

Yes Aliased to
Memory
Write
162 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
6.8 GMAC Interface
The GMAC (Gigabit Ethernet Media Access Controller)
manages the interface between the IP51xx and an
external GMAC PHY device on Port F.

The GMAC supports three types of MAC-PHY interfaces:
MII (Media Independent Interface), RMII (Reduced Media
Independent Interface), and RGMII (Reduced Gigabit
Media Independent Interface).

Table 6-23 shows how the external GMAC interface
signals are assigned to the port pins.

Registers associated with normal read and write
operations from / to the external PHY are located in the
non-blocking region of Port F. Registers used for
configuration of the GMAC are located in the Port F
blocking region.

In order to use the GMAC interface, Function 1 must be
selected on Port F.

Section 7.11.1 gives a detailed description of the port
registers used for the GMAC.

Table 6-23 GMAC Port Signals

Port F
Pin

Mode
I/O Description

MII RMII RGMII
0 TXD[0] TXD[0] TXD[0] O Transmit Data
1 TXD[1] TXD[1] TXD[1] O Transmit Data
2 TXD[2] TXD[2] O Transmit Data
3 TXD[3] TXD[3] O Transmit Data
4 TX_ER O Transmit Error
5 TX_EN TX_EN TX_CTL O Transmit Data Enable / Transmit Control (RGMII)
6 TX_CLK REF_CLK_I I Transmit Clock / Reference Clock Return Path (RMII)
7 COL REF_CLK_O TX_CLK_O I/O Collision / Reference Clock (RMII) / Transmit Clock
8 RXD[0] RXD[0] RXD[0] I Receive Data
9 RXD[1] RXD[1] RXD[1] I Receive Data

10 RXD[2] RXD[2] I Receive Data
11 RXD[3] RXD[3] I Receive Data
12 RX_ER RX_ER I Receive Error
13 RX_DV RX_CTL I Receive Data Valid / Receive Control (RGMII)
14 RX_CLK RX_CLK I Receive Clock
15 CRS CRS_DV I Carrier Sense / Data Valid (RMII)
www.ubicom.com 163

IP51xx Data Sheet – March 28, 2007
6.9 High-Speed USB Interface
The High-Speed USB controller manages the interface
between the IP51xx and external USB devices on the
USB Port. The High-Speed USB port supports High
Speed, Full Speed, and Low Speed USB Modes.

Table 6-24 shows how the external USB interface signals
are assigned to the port pins.

USB Port interrupt, function control, and function status
registers are located in the USB Port non-blocking region.
Registers associated with normal read and write
operations from / to the external USB devices and the
registers used for configuration of the USB controller are
located in the USB Port blocking region.

In order to use the USB interface, Function 1 must be
selected on the USB Port.

Section 7.15.1 gives a detailed description of the port
registers used for the USB Controller.

6.9.1 USB Controller Features
The USB Controller can function as any of the following:

• The function controller of a high- / full-speed USB
peripheral.

• The host controller for a multi-point USB system
(when connected to a hub).

The controller complies both with USB standard for High-
speed and Full-speed functions. The controller is user-
configurable for up to 5 Transmit endpoints and / or up to
5 Receive endpoints in addition to Endpoint 0. The use of
these endpoints for IN transactions and OUT transactions
depends on whether the controller is being used as a
peripheral or as a host. When used as a peripheral, IN

transactions are processed through Tx endpoints and
OUT transactions are processed through Rx endpoints.
When used as a host, IN transactions are processed
through Rx endpoints and OUT transactions are
processed through Tx endpoints. These additional
endpoints can be configured individually in software to
handle either Bulk transfers (which also allows them to
handle Interrupt transfers), Isochronous transfers, or
Control transfers. Further, the endpoints can also be
allocated to different target device functions on the fly,
maximizing the number of devices that can be
simultaneously supported.

Each endpoint has a FIFO associated with it. The FIFO for
Endpoint 0 is 64 bytes deep and will buffer one packet.
Other endpoint FIFOs may be as follows:

• Endpoint 1 FIFO: up to 16 bytes
• Endpoint 2 FIFO: up to 1024 bytes
• Endpoint 3 FIFO: up to 512 bytes
• Endpoint 4 FIFO: up to 512 bytes
• Endpoint 5 FIFO: up to 64 bytes

A Tx endpoint and the Rx endpoint with the same
endpoint number share the same FIFO.

The controller provides all the encoding, decoding, and
checking needed for sending and receiving USB packets,
interrupting the processor only when endpoint data has
been successfully transferred.

The controller offers a range of test modes — primarily the
four test modes for High-speed operation described in the
USB specification. It also includes options that allow it to
be forced into Full-speed mode, High-speed mode, or
Host mode. The last of these may be useful in helping to
debug PHY problems in hardware.

6.9.2 Operation as Host or Peripheral
The controller may be used in a range of different
environments. It can be used as either a High-speed or a
Full-speed peripheral attached to a conventional USB
host (such as a PC). Additionally, the controller may be
used as the host to a range of such peripheral devices in
a Multi-point setup.

In all cases, Control, Bulk, Isochronous, or Interrupt
transactions are supported between the controller and the
devices to which it is attached.

6.9.3 Support for Multiple Devices
The controller has the facility, when operating in Host
mode, to act as the host to a range of USB peripheral
devices — High-speed or Full-speed — where these
devices are connected to the USB interface via a USB

Table 6-24 High-Speed USB Port Signals
Pin Name I/O Description

USB2_ID I If this input is high, then this port
is a USB peripheral port. If this
input is low, then this port is a
USB host port.

USB2_N I/O USB data (negative)
USB2_P I/O USB data (positive)
USB2_RBIAS O Tied to VSS with a 9.1 Kohm

resistor.
USB2_VBUS I The IP51xx senses whether this

is 5V or floating — if it is floating,
then the IP51xx can output on a
GPIO to turn on a circuit to
supply 5V to the USB2 bus.
164 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
hub. In theory, the controller could support a full USB tree
of 128 such devices, although it is likely to be used with
very much smaller numbers of devices in practice.

The key feature of the core’s support for multiple devices
is its facility to allow the functions of the target devices to
be individually allocated to the different Rx and Tx
endpoints implemented in the controller. Furthermore, this
allocation can be made dynamically, allowing the system
designer to make full use of these endpoints to service the
needs of the different devices that are attached to the
core.

Note: The controller’s Multi-Point capability is associated
with a range of registers recording the allocation of device
functions to individual endpoints and device function
characteristics such as endpoint number, operating speed
and transaction type on an endpoint-by-endpoint basis.
Although principally associated with the use of the
controller as the host to a number of devices, these
registers must also be set when the core is used as the
host for a single target device.

6.9.4 Throughput
The throughput allocation for this USB controller module
is 120 Mbps. This assumes that only 1/8 of the CPU
resources will be allocated to USB devices to meet this
target throughput. This USB controller contains a four
stage buffer which can hold up to four commands from the
USB port.

Throughput can go up to 175 Mbps if double-buffering is
used.

6.10 Debug Port
The Debug Port provides a test interface through which
an external host can access internal resources within the
IP51xx for debug purposes. Table 6-25 shows how the
debug port interface signals are assigned to the port pins,
using a simple SPI interface.

TSSN (Slave Select) is an active low signal. When
asserted, the external host is sending data through TSI
and receiving data through TSO. The external host is
always the master, and the IP51xx is always the slave.

Section 5.3 describes the commands that the host can
use to access the internal resources of the IP51xx, and
shows how to use the Debug Port to perform a variety of
debugging operations.

Table 6-25 Debug Port Interface Signals
Signal I/O Description

TSI I Serial Data Input — driven by
the external host

TSO O Serial Data Output — driven by
the debug port.

TSCK O SPI Clock
TSSN I Slave Select
www.ubicom.com 165

IP51xx Data Sheet – March 28, 2007
7.0 Memory Reference
For an overview of IP51xx memory spaces, see Figure 3-1.

The following sections show addresses, reset values, and descriptions of IP51xx registers.

7.1 Alphabetical List of Registers
Table 7-1 lists the IP51xx registers alphabetically. The subsequent sections describe these registers in functional groups
– Per-Thread Registers (Section 7.2), Global Registers (Section 7.3), and Indirect Registers, which are composed of
HRT Tables (Section 7.4), On-Chip Peripherals Registers (Section 7.5), and Per-Port Registers (Section 7.6).

Note: This alphabetical list does not include any blocking registers, because they do not have unique names that are
meaningful out of context. For blocking registers, refer to the per-port register descriptions beginning in Section 7.6.

Table 7-1 Alphabetical List of Registers
Register Type Address Description Details

A0-A6 Per-Thread 080-098 32-bit address registers Table 7-2
A7 or SP Per-Thread 09C 32-bit stack pointer Table 7-2
ACC0_HI Per-Thread 0A0 High 32 bits of MAC, DSP, and multiplier result Table 7-2
ACC0_LO Per-Thread 0A4 Low 32 bits of MAC, DSP, and multiplier result Table 7-2
ACC1_HI Per-Thread 0D8 High 32 bits of DSP result Table 7-2
ACC1_LO Per-Thread 0DC Low 32 bits of DSP result Table 7-2
CHIP_ID Global 100 Chip Device ID and Revision Number Table 7-3,

Section 7.3.1
CSR Per-Thread 0B4 Control and Status Register Table 7-2,

Section 7.2.1
D_RANGE0_EN Global 2A0 Data space memory range 0 thread enables Table 7-3
D_RANGE0_HI Global 260 Data space memory range 0 high Table 7-3
D_RANGE0_LO Global 280 Data space memory range 0 low Table 7-3
D_RANGE1_EN Global 2A4 Data space memory range 1 thread enables Table 7-3
D_RANGE1_HI Global 264 Data space memory range 1 high Table 7-3
D_RANGE1_LO Global 284 Data space memory range 1 low Table 7-3
D_RANGE2_EN Global 2A8 Data space memory range 2 thread enables Table 7-3
D_RANGE2_HI Global 268 Data space memory range 2 high Table 7-3
D_RANGE2_LO Global 288 Data space memory range 2 low Table 7-3
D_RANGE3_EN Global 2AC Data space memory range 3 thread enables Table 7-3
D_RANGE3_HI Global 26C Data space memory range 3 high Table 7-3
D_RANGE3_LO Global 28C Data space memory range 3 low Table 7-3
D0-D15 Per-Thread 000-03C General-purpose data registers Table 7-2
DCADDR Indirect 0100 0600 Data Cache Address Table 7-11
DCAPT Global 170 Write Trap address Table 7-3,

Section 7.3.5
DCSTAT Indirect 0100 060C Data Cache Status Table 7-11
DCRDD Indirect 0100 0604 Data Cache Read Data Table 7-11
DCWRD Indirect 0100 0608 Data Cache Write Data Table 7-11
DDR Cal Ctrl Indirect 0100 0030 DDR Calibrator control register Table 7-5
DDR Cal Stat Indirect 0100 0034 DDR Calibrator status register Table 7-5
166 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
FIFO Level Indirect,
Per-Port

4C+base FIFO current level Table 7-17

FIFO Watermark Indirect,
Per-Port

48 + base FIFO watermark trigger level Table 7-17

Function Indirect,
Per-Port

00 + base Function select, reset, and FIFO configuration Table 7-17

Function Ctrl 0 Indirect,
Per-Port

30 + base Function control register 0 Table 7-17

Function Ctrl 1 Indirect,
Per-Port

34 + base Function control register 1 Table 7-17

Function Ctrl 2 Indirect,
Per-Port

38 + base Function control register 2 Table 7-17

Function Status 0 Indirect,
Per-Port

3C + base Function status register 0 Table 7-17

Function Status 1 Indirect,
Per-Port

40 + base Function status register 1 Table 7-17

Function Status 2 Indirect,
Per-Port

44 + base Function status register 2 Table 7-17

GLOBAL_CTRL Global 134 Global Control Register Table 7-3
GPIO Ctrl Indirect,

Per-Port
04 + base GPIO output enable Table 7-17

GPIO In Indirect,
Per-Port

0C + base GPIO data input — the current state of the external
I/O pins

Table 7-17

GPIO Mask Indirect,
Per-Port

50 + base GPIO mask Table 7-17

GPIO Out Indirect,
Per-Port

08 + base GPIO data output Table 7-17

HASH_OUT_0 Indirect 0100 0470 Security hash register, bits [159:128] Table 7-9
HASH_OUT_1 Indirect 0100 0474 Security hash register, bits [127:96] Table 7-9
HASH_OUT_2 Indirect 0100 0478 Security hash register, bits [95:64] Table 7-9
HASH_OUT_3 Indirect 0100 047C Security hash register, bits [63:32] Table 7-9
HASH_OUT_4 Indirect 0100 0480 Security hash register, bits [31:0] Table 7-9
HRT0 Indirect,

HRT
800-83C Hard Real-Time Table 0 (Sixteen 32 bit registers) Table 7-4

HRT1 Indirect,
HRT

900-93C Hard Real-Time Table 1 (Sixteen 32 bit registers) Table 7-4

I_RANGE0_EN Global 240 Instruction space memory range 0 thread enables Table 7-3
I_RANGE0_HI Global 200 Instruction space memory range 0 high Table 7-3
I_RANGE0_LO Global 220 Instruction space memory range 0 low Table 7-3
I_RANGE1_EN Global 244 Instruction space memory range 1 thread enables Table 7-3
I_RANGE1_HI Global 204 Instruction space memory range 1 high Table 7-3
I_RANGE1_LO Global 224 Instruction space memory range 1 low Table 7-3
I_RANGE2_EN Global 248 Instruction space memory range 2 thread enables Table 7-3
I_RANGE2_HI Global 208 Instruction space memory range 2 high Table 7-3
I_RANGE2_LO Global 228 Instruction space memory range 2 low Table 7-3

Table 7-1 Alphabetical List of Registers (continued)
Register Type Address Description Details
www.ubicom.com 167

IP51xx Data Sheet – March 28, 2007
ICADDR Indirect 0100 0500 Instruction Cache Address Table 7-10
ICCTRL Indirect 0100 0510 Instruction Cache Control Table 7-10
ICSTAT Indirect 0100 050C Instruction Cache Status Table 7-10
ICRDD Indirect 0100 0504 Instruction Cache Read Data Table 7-10
ICWRD Indirect 0100 0508 Instruction Cache Write Data Table 7-10
INMAIL Indirect 0100 0300 Incoming Mailbox Table 7-8
INST_CNT Per-Thread 0B0 Executed instruction count Table 7-2
INT_CLR0 Global 124 Clears bits in INT_STAT0. Table 7-3
INT_CLR1 Global 128 Clears bits in INT_STAT1. Table 7-3
INT_MASK0 Per-Thread 0C0 AND’ed with Global INT_STAT0 to mask interrupts Table 7-2
INT_MASK1 Per-Thread 0C4 AND’ed with Global INT_STAT1 to mask interrupts Table 7-2
INT_SET0 Global 114 Sets bits in INT_STAT0. Table 7-3
INT_SET1 Global 118 Sets bits in INT_STAT1. Table 7-3
INT_STAT0 Global 104 Interrupt Status Register 0 Table 7-3,

Section 7.3.2.
INT_STAT1 Global 108 Interrupt Status Register 1 Table 7-3,

Section 7.3.3.
Interrupt Clear Indirect,

Per-Port
1C + base Port interrupt clear Table 7-17

Interrupt Mask Indirect,
Per-Port

14 + base Port interrupt mask Table 7-17,

Interrupt Set Indirect,
Per-Port

18 + base Port interrupt set Table 7-17

Interrupt Status Indirect,
Per-Port

10 + base Port interrupt status from selected function Table 7-17

IO PU Config Indirect 0100 008C I/O driver cell Power Up Enable signal Table 7-5
IREAD_DATA Per-Thread 0BC IREAD result Table 7-2
MAC_RC16 Per-Thread 0A8 Rounded and clipped multiplier accumulate/result Table 7-2
MAIL_STAT Indirect 0100 0308 Mailbox Status Table 7-8
MPT_VAL Indirect 0100 0100 Multipurpose Timer value Table 7-6
MT_ACTIVE Global 138 Active/inactive status for each thread Table 7-3
MT_ACTIVE_CLR Global 140 Clears bits in MT_ACTIVE. Table 7-3
MT_ACTIVE_SET Global 13C Sets bits in MT_ACTIVE. Table 7-3
MT_BLOCKED_CLR Global 1B4 Clear bits of MT_I_BLOCKED and MT_D_BLOCKED Table 7-3
MT_BREAK Global 158 Multithreading BKPT Executed Table 7-3
MT_BREAK_CLR Global 15C Clears bits in MT_BREAK. Table 7-3
MT_DBG_ACTIVE Global 144 AND’ed with MT_ACTIVE for debug control. Table 7-3
MT_DBG_ACTIVE_CLR Global 17C Clears bits in MT_DBG_ACTIVE. Table 7-3
MT_DBG_ACTIVE_SET Global 148 Sets bits in MT_DBG_ACTIVE. Table 7-3
MT_EN Global 14C Multithreading Enable Table 7-3
MT_HPRI Global 150 Multithreading High-Priority Thread Table 7-3
MT_HRT Global 154 Multithreading Hard Real-Time Thread Table 7-3
MT_D_BLOCKED Global 1A8 Thread blocked due to data access (1 bit / thread) Table 7-3

Table 7-1 Alphabetical List of Registers (continued)
Register Type Address Description Details
168 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
MT_D_BLOCKED_SET Global 1B0 Set bits of MT_D_BLOCKED register Table 7-3
MT_I_BLOCKED Global 1A4 Thread blocked due to instruction fetch (1 bit / thread) Table 7-3
MT_I_BLOCKED_SET Global 1AC Set bits of MT_I_BLOCKED register Table 7-3
MT_MIN_DELAY_EN Global 164 Multithreading Minimum Delay Enable Table 7-3
MT_SINGLE_STEP Global 160 Controls single-step operation for each thread. Table 7-3
MT_TRAP_EN Global 1B8 Multithreading Enable Traps mask Table 7-3
MT_TRAP Global 1BC Multithreading Trap (set by hardware when an

enabled trap occurs, or by writing to MT_TRAP_SET)
Table 7-3

MT_TRAP_CLR Global 1C4 Clear bits of MT_TRAP Table 7-3
MT_TRAP_SET Global 1C0 Set bits of MT_TRAP Table 7-3
MTESTADDR Indirect 0100 0900 Memory Address for memory test Table 7-15
MTESTCTRL Indirect 0100 090C Memory Test Control Register Table 7-15
MTESTRD Indirect 0100 0908 Memory Test Read Data Table 7-15
MTESTWD Indirect 0100 0904 Memory Test Write Data Table 7-15
OCM_BIST_CFG Indirect 0100 0704 On-Chip Memory Built-In Self Test Configuration Table 7-12

OCM_BIST_STAT Indirect 0100 0708 On-Chip Memory Built-In Self Test Status Table 7-12

OCM_CFG Indirect 0100 0700 On-Chip Memory Configuration Table 7-12

OCP_CLK_CORE_CFG Indirect 0100 0000 Core PLL configuration register Table 7-5

OCP_CLK_DDR_CFG Indirect 0100 0008 DDR PLL configuration register Table 7-5

OCP_CLK_DDRDS_CFG Indirect 0100 000C DDR Deskew PLL configuration register Table 7-5

OCP_CLK_IO_CFG Indirect 0100 0004 I/O PLL configuration register Table 7-5

OCP_CLK_SLIP_CLR Indirect 0100 0010 Global PLL slip latch clear register Table 7-5

OCP_CLK_SLIP_STAT Indirect 0100 0014 Global PLL slip latch status register Table 7-5
OUTMAIL Indirect 0100 0304 Outgoing Mailbox Table 7-8
PC Per-Thread 0D0 32-bit program counter Table 7-2
PREVIOUS_PC Per-Thread 0E0 Program counter value for last successfully executed

instruction for this thread.
Table 7-2

ROSR Per-Thread 0B8 Read-only Status Register Table 7-2,
Section 7.2.2

Reset Reasons Indirect 0100 0084 Reasons for the last chip reset Table 7-5
RT_COM Indirect 0100 0104 Real-Time Timer Compare register Table 7-6
Receive FIFO HI Indirect,

Per-Port
2C + base Receive FIFO high word, bits [63:32] Table 7-17

Receive FIFO LO Indirect,
Per-Port

28 + base Receive FIFO low word, bits [31:0] Table 7-17

SCRATCHPAD0 Global 180 Scratch Pad Register 0 Table 7-3
SCRATCHPAD1 Global 184 Scratch Pad Register 1 Table 7-3
SCRATCHPAD2 Global 188 Scratch Pad Register 2 Table 7-3
SCRATCHPAD3 Global 18C Scratch Pad Register 3 Table 7-3
SEC_IN_0 Indirect 0100 0430 Security input register, bits [159:128] Table 7-9
SEC_IN_1 Indirect 0100 0434 Security input register, bits [127:96] Table 7-9
SEC_IN_2 Indirect 0100 0438 Security input register, bits [95:64] Table 7-9

Table 7-1 Alphabetical List of Registers (continued)
Register Type Address Description Details
www.ubicom.com 169

IP51xx Data Sheet – March 28, 2007
SEC_IN_3 Indirect 0100 043C Security input register, bits [63:32] Table 7-9
SEC_IN_4 Indirect 0100 0440 Security input register, bits [31:0] Table 7-9
SEC_KEY_0 Indirect 0100 0410 Security key register, bits [255:224] Table 7-9
SEC_KEY_1 Indirect 0100 0414 Security key register, bits [223:192] Table 7-9
SEC_KEY_2 Indirect 0100 0418 Security key register, bits [191:160] Table 7-9
SEC_KEY_3 Indirect 0100 041C Security key register, bits [159:128] Table 7-9
SEC_KEY_4 Indirect 0100 0420 Security key register, bits [127:96] Table 7-9
SEC_KEY_5 Indirect 0100 0424 Security key register, bits [95:64] Table 7-9
SEC_KEY_6 Indirect 0100 0428 Security key register, bits [63:32] Table 7-9
SEC_KEY_7 Indirect 0100 042C Security key register, bits [31:0] Table 7-9
SEC_OUT_0 Indirect 0100 0450 Security output register, bits [159:128] Table 7-9
SEC_OUT_1 Indirect 0100 0454 Security output register, bits [127:96] Table 7-9
SEC_OUT_2 Indirect 0100 0458 Security output register, bits [95:64] Table 7-9
SEC_OUT_3 Indirect 0100 045C Security output register, bits [63:32] Table 7-9
SEC_OUT_4 Indirect 0100 0460 Security output register, bits [31:0] Table 7-9
Security Control Indirect 0100 0400 Security Module Control Register Table 7-9
Security Status Indirect 0100 0404 Security Module Status Register Table 7-9
SOURCE3 Per-Thread 0AC Implicit third source operand Table 7-2
SP or A7 Per-Thread 09C 32-bit stack pointer Table 7-2
STS_CFG0 Indirect 0100 0800 Statistics Configuration Register 0 Table 7-13
STS_CFG1 Indirect 0100 0808 Statistics Configuration Register 1 Table 7-13
STS_CFG2 Indirect 0100 0810 Statistics Configuration Register 2 Table 7-13
STS_CFG3 Indirect 0100 0818 Statistics Configuration Register 3 Table 7-13
STS_CNT0 Indirect 0100 0804 Statistics Counter 0 Table 7-13
STS_CNT1 Indirect 0100 080C Statistics Counter 1 Table 7-13
STS_CNT2 Indirect 0100 0814 Statistics Counter 2 Table 7-13
STS_CNT3 Indirect 0100 081C Statistics Counter 3 Table 7-13
SW Reset Indirect 0100 0080 Software reset Table 7-5
SYS_COM_0 Indirect 0100 0118 System Timer Compare Register 0 (INT_STAT1[0]) Table 7-6
SYS_COM_1 Indirect 0100 011C System Timer Compare Register 1 (INT_STAT1[1]) Table 7-6
SYS_COM_2 Indirect 0100 0120 System Timer Compare Register 2 (INT_STAT1[2]) Table 7-6
SYS_COM_3 Indirect 0100 0124 System Timer Compare Register 3 (INT_STAT1[3]) Table 7-6
SYS_COM_4 Indirect 0100 0128 System Timer Compare Register 4 (INT_STAT1[4]) Table 7-6
SYS_COM_5 Indirect 0100 012C System Timer Compare Register 5 (INT_STAT1[5]) Table 7-6
SYS_COM_6 Indirect 0100 0130 System Timer Compare Register 6 (INT_STAT1[6]) Table 7-6
SYS_COM_7 Indirect 0100 0134 System Timer Compare Register 7 (INT_STAT1[7]) Table 7-6
SYS_COM_8 Indirect 0100 0138 System Timer Compare Register 8 (INT_STAT1[8]) Table 7-6
SYS_COM_9 Indirect 0100 013C System Timer Compare Register 9 (INT_STAT1[9]) Table 7-6
SYS_VAL Indirect 0100 0114 The value of the System Timer Table 7-6
TKEY Indirect 0100 0108 Timer Block’s security key code Table 7-6
TRAP_CAUSE Per-Thread 0D4 The cause(s) of the last instruction trap for this

thread.
Table 7-2

Table 7-1 Alphabetical List of Registers (continued)
Register Type Address Description Details
170 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
TRNG_CFG Indirect 0100 0200 True Random Number Generator Configuration Table 7-7
TRNG_VAL Indirect 0100 0204 32-bit True Random Number Value Table 7-7
Transmit FIFO HI Indirect,

Per Port
24 + base Transmit FIFO high word, bits [63:32] Table 7-17

Transmit FIFO LO Indirect,
Per Port

20 + base Transmit FIFO low word, bits [31:0] Table 7-17

USB DFT Ctrl Indirect 0100 0038 USB DFT control register Table 7-5
USB DFT Stat Indirect 0100 003C USB DFT status register Table 7-5
WD_CFG Indirect 0100 0110 Watchdog Configuration register Table 7-6
WD_COM Indirect 0100 010C Watchdog Compare register Table 7-6

Table 7-1 Alphabetical List of Registers (continued)
Register Type Address Description Details
www.ubicom.com 171

IP51xx Data Sheet – March 28, 2007
7.2 Per-Thread Registers

Table 7-2 Per-Thread Registers

Address Register Read/
Write Description 32-Bit

Reset Value
 000-03C D0–D15 R/W General-purpose 32-bit data registers. The only

restriction is that they cannot be used as address or
stack pointer registers.
Note: Unlike earlier Ubicom chips, the IP51xx has no
power-on reset for D0-D15. They are uninitialized at
power on.

xxxx xxxx

 040-07C Reserved
 080-098 A0–A6 R/W 32-bit address registers. These are used as pointers to

operands.
Note: Unlike earlier Ubicom chips, the IP51xx has no
power-on reset for A0-A6. They are uninitialized at
power on.

xxxx xxxx

 09C A7 or SP R/W 32-bit Stack pointer, also referred to as A7. The use of
A7 as the stack pointer register is conventional, not
“hard-wired” in the architecture. There are no
instructions that use SP explicitly.
Note: Unlike earlier Ubicom chips, the IP51xx has no
power-on reset for A7. It is uninitialized at power on.

xxxx xxxx

 0A0 ACC0_HI R/W High 32 bits of MAC, DSP, and multiplier result. Also set
by CRCGEN.

0000 0000

 0A4 ACC0_LO R/W Low 32-bits of MAC, DSP, and multiplier result. Also set
by CRCGEN.

0000 0000

 0A8 MAC_RC16 R/W Rounded and Clipped S16.15 format of the most recent
MAC, multiplier, CRCGEN result. The 48 bit result is
interpreted as s16.31 format and rounded/clipped to
S.15 format. This is then sign extended to 32 bits.

0000 0000

 0AC SOURCE3 R/W Used as an implicit third source operand by certain
instructions. Since the instruction formats are limited to 2
source and one destination operand, this register is
used when a third operand is needed.

0000 0000

 0B0 INST_CNT RO This register maintains a count of the executed
instructions for the associated context. When the
execution of a context is suspended, the associated
counter also stops. This 32-bit count starts as zero after
a reset operation, and otherwise cannot be reset. The
count rolls over when it reaches its maximum value of
0xFFFF FFFF. This count, in conjunction with the global
timer value, can be used to determine run-time
performance distribution statistics, as well as to help in
debugging (e.g., did thread #N execute any instructions
yet?). Reading INST_CNT for a thread that is not
quiescent gives an approximate value.

0000 0000

0B4 CSR (Control &
Status Register)

R/W Contains condition codes, and other status bits, as well
as some thread-specific control bits (refer to
Section 7.2.1)

0000 0000
172 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
For those per-thread registers that have special functions
assigned to bits or fields within the register, those bits and
fields are described below.

0B8 ROSR (Read-Only
Status Register)

RO Extension of CSR containing bits or fields that are set by
hardware, but read-only by software (refer to
Section 7.2.2).

0000 0000

0BC IREAD_DATA R/W The IREAD result is placed in this register. This register
is a 32-bit scratchpad, for backwards compatibility with
the IREAD instruction.

0000 0000

0C0 INT_MASK0 R/W A 32-bit mask that, when AND'ed with the global 32-bit
INT_STAT0 register, determines whether an interrupt
condition is seen by a given thread.

0000 0000

0C4 INT_MASK1 R/W A 32-bit mask that, when AND'ed with the global 32-bit
INT_STAT1 register, determines whether an interrupt
condition is seen by a given thread.

0000 0000

 0C8-0CC Reserved
0D0 PC R/W 32-bit Program Counter. Only valid for access in a

thread that is quiescent (has no instructions in the
pipeline). In that case, it points to the next instruction to
be executed when that thread resumes. The PC is set
by one of the following:·
• Set to the power-up address after reset/power-up.
• Direct write by another thread, when this thread is

inactive. The controlling thread uses the destination
thread select field in its CSR to address the target
thread's PC register.

Do not try to set PC of the current thread to do a jump.

6000 0000

0D4 TRAP_CAUSE R/W This register returns the cause(s) of the last instruction
trap for this thread (refer to Section 7.2.3).

0000 0000

 0D8 ACC0_HI R/W High 32 bits of DSP result. 0000 0000
 0DC ACC0_LO R/W Low 32-bits of DSP result. 0000 0000
0E0 PREVIOUS_PC RO The value of the program counter corresponding to the

last successfully executed instruction for this thread.
This value may be read while the corresponding thread
is executing.

0000 0000

 0E4-0FC Reserved

Table 7-2 Per-Thread Registers

Address Register Read/
Write Description 32-Bit

Reset Value
www.ubicom.com 173

IP51xx Data Sheet – March 28, 2007
7.2.1 CSR
The Control and Status Register contains condition codes
and other status bits, as well as some thread-specific
control bits as follows:

Note: Writing the source or destination thread select
fields will also modify NZVC bits of the current thread at
an unpredictable time.

7.2.2 ROSR
The Read-Only Status Register is an extension of CSR
that contains bits or fields that are set by hardware, but
read-only by software.

Bits Description
31:21 Reserved

20 DSP_O. DSP Overflow Status (sticky). DSP
instructions set this bit if the result is not
exact, but never clear it. When a DSP
instruction sets this bit, the change is visible
several clocks after the DSP instruction.

19 Reserved
18:14 Destination Thread Select. Used to override

the default context selection for directly
addressed destination operand register. Has
no effect for address calculations. Does not
affect implicit destinations (such as
ACC0_HI). Bits are defined as follows:

18:15 DST_SEL. Destination context
number. Relevant only if bit 14 is
set.

14 DST_SEL_EN: 1 On; 0 Off.
Enables bits 18:15.

13 Reserved
12:8 Source Thread Select. Used to override the

default context selection for directly
addressed source 1 operand register. Has no
effect for address calculations. Bits are
defined as follows:

12:9 SRC_SEL. Source 1 context
number. Relevant only if bit 8 is set.

8 SRC_SEL_EN: 1 On; 0 Off.
Enables bits 13:9.

7-4 32-bit-Operand Condition Code Bits as
{N,Z,V,C}32 ordering. Valid only when the
thread has no instructions in the pipeline.

Bit 7: N (negative)
Bit 6: Z (zero)
Bit 5: V (overflow)
Bit 4: C (carry)

3-0 16-bit-Operand Condition Code Bits as
{N,Z,V,C}16 ordering. Valid only when the
thread has no instructions in the pipeline.

Bit 3: N (negative)
Bit 2: Z (zero)
Bit 1: V (overflow)
Bit 0: C (carry)

Bits Description
31:6 Reserved
5:2 TNUM. Thread Number: Returns the thread

number of the current instruction.
1 MEM_BUSY: Memory Busy. This bit is hard-

coded to 0, for backwards compatibility with
the IREAD/IWRITE instructions.

0 INT: Interrupt Condition. Indicates a pending
interrupt condition for the thread. Derived by
AND'ing the 64-bit thread-specific interrupt
mask with the corresponding bits in the
global interrupt status registers
174 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.2.3 TRAP_CAUSE
The TRAP_CAUSE register returns the cause(s) of the
last instruction trap for this thread. Software should write
to this register only when the thread is quiescent.

Bits Description
31:13 Reserved

12 DST_RANGE_ERR. Destination memory
protection error. When set, this bit indicates
that a destination write access was
disallowed by the memory protection
mechanism.

11 SRC1_RANGE_ERR. Source 1 memory
protection error. When set, this bit indicates
that a source 1 read was attempted to a
disallowed address.

10 I_RANGE_ERR. Instruction fetch memory
protection error. When set, this bit indicates
that an instruction fetch was attempted to a
disallowed address.

9 DCAPT. Write address trap. When set, this
bit indicates that a write address trap was
triggered. This means that a write was
performed to the address specified by the
DCAPT register. This watchpoint applies only
to writes performed using the restricted data
register-only destination and those using the
general destination. Additionally, this
watchpoint applies to the general destination
of LEA and PDEC instructions, unless the
destination is an address register and
DST_SEL_EN in the CSR is 0. This
watchpoint does not apply to address
registers modified through the auto-
incrementing addressing modes, or the
destination of MOVEAI, CALL, or CALLI.

8 DST_SERROR. Destination synchronous
error. When set, this bit indicates that a
Protocol C synchronous error was
encountered on a write operation.

7 SRC1_SERROR. Source 1 synchronous
error. When set, this bit indicates that a
Protocol C synchronous error was
encountered on a read operation.

6 DST_MISALIGNED. Destination operand
alignment error. When set, this bit indicates
that a misaligned write was attempted with
the destination operand.

5 SRC1_MISALIGNED. Source 1 operand
alignment error. When set, this bit indicates
that a misaligned read was attempted with
the source 1 operand. Note that this does not
apply to LEA and PDEC instructions, since
they do not actually read source operands,
but merely perform address calculations.

4 DST_DECODE_ERR. Destination address
decode error. When set, this bit indicates that
a write operation was attempted to an
address that was decoded neither by the top-
level address decoder in the main processor
itself, nor by the Protocol C data bus address
decoder.

3 SRC1_DECODE_ERR. Source 1 address
decode error. When set, this bit indicates that
a read operation was attempted to an
address that was decoded neither by the top-
level address decoder in the main processor
itself, nor by the Protocol C data bus address
decoder.

2 ILLEGAL_INST. Illegal instruction. When set,
this bit indicates that execution of an
undefined (illegal) instruction was attempted.

1 I_SERROR. Instruction synchronous error.
When set, this bit indicates that a Protocol C
synchronous error was encountered on an
instruction fetch.

0 I_DECODE_ERR. Instruction address
decode error. When set, this bit indicates that
an instruction fetch was attempted to an
address that was not decoded by the
Protocol C instruction bus address decoder.

Bits Description
www.ubicom.com 175

IP51xx Data Sheet – March 28, 2007
7.3 Global Registers
All these registers are 32 bits wide.

Table 7-3 Global Registers

Address Register(s) Read/
Write Description 32-Bit

Reset Value
100 CHIP_ID RO Chip Device ID and Revision Number (refer to

Section 7.3.1).
0002 0001

104
108

INT_STAT0
INT_STAT1

RO These two 32-bit registers contain 64-bits of hardware
and software generated interrupt conditions (refer to
Section 7.3.2 and Section 7.3.3).

0000 0000

10C–110 Reserved
114
118

INT_SET0
INT_SET1

WO When a value is written to one of these 32-bit
registers, each bit position containing a 1 causes the
corresponding bit in the INT_STAT0 or INT_STAT1
register to be set, unless it is an I/O interrupt bit.

XXXX XXXX

11C–120 Reserved
124
128

INT_CLR0
INT_CLR1

WO When a value is written to one of these 32-bit
registers, each bit position containing a 1 causes the
corresponding bit in the INT_STAT0 or INT_STAT1
register to be cleared, unless it is an I/O interrupt bit.

XXXX XXXX

12C–130 Reserved
134 GLOBAL_CTRL R/W This register contains miscellaneous control bits and

values. The control bits act as global enable control
for certain functions of the processor. Setting one of
these enable bits to one acts as an overall enable for
the function, but other registers are still involved in the
detailed operation of the functions (refer to
Section 7.3.4).

0000 0000

138 MT_ACTIVE RO This 32-bit register controls the thread’s active /
inactive status. The register has one status bit per
thread; bit position equals thread number (bits 31:10
are reserved). Bits are cleared by a suspend
instruction or write to MT_ACTIVE_CLR; bits are set
by an unmasked interrupt or write to
MT_ACTIVE_SET.

0000 0001
(Thread #0

active, all other
threads inac-

tive)

1: Active
0: Suspended

13C MT_ACTIVE_SET WO When a value is written to this register, each bit
position containing a 1 causes the corresponding bit
in the MT_ACTIVE register to be set (bits 31:10 are
reserved).

XXXX XXXX

140 MT_ACTIVE_CLR WO When a value is written to this register, each bit
position containing a 1 causes the corresponding bit
in the MT_ACTIVE register to be cleared (bits 31:10
are reserved).

XXXX XXXX
176 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
144 MT_DBG_ACTIVE RO This register is ANDed with MT_ACTIVE register, for
purposes of thread scheduling. It prevents threads
that are halted for debugging from being inadvertently
reactivated by the occurrence of an interrupt. Bits in
this register are cleared by break conditions or traps,
or by single step operations or writing to
MT_DBG_ACTIVE_CLR. Once cleared, they can only
be set by software, by writing to the
MT_DBG_ACTIVE_SET register. (Bits 31:10 are
reserved.)

0000 0001
(Thread #0

debug active,
all other

threads debug
inactive)

148 MT_DBG_ACTIVE_SET WO Writing a 1 into a given bit position causes the
corresponding bit in the MT_DBG_ACTIVE register to
be set (bits 31:10 are reserved).

XXXX XXXX

14C MT_EN (Multithreading
Enable)

R/W Indicates which threads are currently enabled. If a
thread is not enabled, then it cannot be allocated any
execution slots. If it is enabled, it could either be
suspended (inactive) or running. Clearing a thread's
enable bit blocks further execution of the thread, but
does not clear its bit in the MT_ACTIVE register. Bit
position corresponds to thread number (bits 31:10 are
reserved).

0000 0001
(Thread #0
enabled, all

other threads
disabled)

1: Enabled
0: Disabled

150 MT_HPRI (Multithreading
High Priority Thread)

R/W 32-bit register that determines the priority of Non-
Real-Time (NRT) threads as high or low priority. For
HRT threads this bit is ignored. Bit position
corresponds to thread number (bits 31:10 are
reserved).

0000 0001
(Thread #0 high
priority, all other
threads low pri-

ority)
1: High Priority
0: Low Priority

154 MT_HRT (Multithreading
Hard Real-Time Thread)

R/W 32-bit register that determines which threads are HRT
and NRT: Bit position corresponds to thread number
(bits 31:10 are reserved).

0000 0000

1: HRT
0: NRT

158 MT_BREAK
(Multithreading BKPT
executed)

RO 32-bit register that indicates which thread or threads
are halted for a break condition of some sort (1 =
halted). The BKPT instruction can cause an arbitrary
number of threads to be halted, but only the bit for the
thread executing the instruction is set in this register.
It can therefore be read to determine which thread
executed the BKPT instruction (bits 31:10 are
reserved).

0000 0000

15C MT_BREAK_CLR WO Writing a 1 to a given bit position in this register
causes the corresponding bit in the multithreading
break register to be cleared (bits 31:10 are reserved).

XXXX XXXX

Table 7-3 Global Registers

Address Register(s) Read/
Write Description 32-Bit

Reset Value
www.ubicom.com 177

IP51xx Data Sheet – March 28, 2007
160 MT_SINGLE_STEP R/W A 1 bit in this register causes the corresponding
thread to be allocated exactly one pipeline slot the
next time it is scheduled. After that, the scheduling
hardware immediately clears its enable bit in the
MT_DBG_ACTIVE register. This blocks further
scheduling of the thread until its bit in the
MT_DBG_ACTIVE register is set by writing a 1 to its
position in the MT_DBG_ACTIVE_SET register (bits
31:10 are reserved).

0000 0000

164 MT_MIN_DELAY_EN
(MT Minimum Delay
Enable)

R/W Specifies threads whose scheduling is constrained by
the minimum delay interval specified in the
GLOBAL_CTRL register. The minimum delay feature
can be used to provide more deterministic behavior to
threads whose coding leaves them subject to pipeline
hazards. Writing a 1 to a given bit position in this
register enables the minimum delay function for the
corresponding thread (bits 31:10 are reserved).

0000 0000

168 MT_BREAK_SET WO Writing a 1 to any bit in this register causes the
corresponding bit in the multithreading break register
to be set (bits 31:10 are reserved).

XXXX XXXX

16C Reserved
170 DCAPT R/W Write Trap Address (refer to Section 7.3.5). 0000 0000

174–178 Reserved
17C MT_DBG_ACTIVE_CLR WO Writing a 1 into a given bit position causes the

corresponding bit in the MT_DBG_ACTIVE register to
be cleared.

XXXX XXXX

180 SCRATCHPAD0 R/W Four scratch-pad registers. Cleared at power-on and
by any other reset.

0000 0000
184 SCRATCHPAD1 R/W
188 SCRATCHPAD2 R/W
18C SCRATCHPAD3 R/W

190–1A0 Reserved
1A4 MT_I_BLOCKED RO A 1 in a given bit position indicates that the

corresponding thread is blocked due to an instruction
fetch. Bits 31:10 are reserved.

0000 0000

1A8 MT_D_BLOCKED RO A 1 in a given bit position indicates that the
corresponding thread is blocked due to a data access.
Bits 31:10 are reserved.

0000 0000

1AC MT_I_BLOCKED_SET WO Writing a 1 in a given bit position sets the
corresponding bit in MT_I_BLOCKED. Writing a 0 has
no effect. Bits 31:10 are reserved.

XXXX XXXX

1B0 MT_D_BLOCKED_SET WO Writing a 1 in a given bit position sets the
corresponding bit in MT_D_BLOCKED. Writing a 0
has no effect. Bits 31:10 are reserved.

XXXX XXXX

1B4 MT_BLOCKED_CLR WO Writing a 1 in a given bit position clears the
corresponding bits in MT_I_BLOCKED and
MT_D_BLOCKED. Writing a 0 has no effect. Bits
31:10 are reserved.

XXXX XXXX

Table 7-3 Global Registers

Address Register(s) Read/
Write Description 32-Bit

Reset Value
178 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
1B8 MT_TRAP_EN R/W Writing a 1 in a given bit position enables traps for the
corresponding thread. Writing a 0 disables traps for
that thread. Bits 31:10 are reserved.

0000 0000

1BC MT_TRAP RO A 1 in a given bit position indicates that the
corresponding thread has been trapped.
A 0 indicates that the thread has not been trapped.
Bits 31:10 are reserved.

0000 0000

1C0 MT_TRAP_SET WO Writing a 1 in a given bit position sets the
corresponding bit in MT_TRAP. Writing a 0 has no
effect. Bits 31:10 are reserved.

XXXX XXXX

1C4 MT_TRAP_CLR WO Writing a 1 in a given bit position clears the
corresponding bit in MT_TRAP. Writing a 0 has no
effect. Bits 31:10 are reserved.

XXXX XXXX

1C8-1FC Reserved
200 I_RANGE0_HI R/W Instruction space memory range 0 high (see Note 1). FFFF FFFC
204 I_RANGE1_HI R/W Instruction space memory range 1 high (see Note 1). FFFF FFFC
208 I_RANGE2_HI R/W Instruction space memory range 2 high (see Note 1). FFFF FFFC

20C-21C Reserved
220 I_RANGE0_LO R/W Instruction space memory range 0 low (see Note 1). 0000 0000
224 I_RANGE1_LO R/W Instruction space memory range 1 low (see Note 1). 0000 0000
228 I_RANGE2_LO R/W Instruction space memory range 2 low (see Note 1). 0000 0000

22C-23C Reserved
240 I_RANGE0_EN R/W Writing a 1 in a given bit position enables instruction

access to this address range for the corresponding
thread. Writing a 0 disables it. Bits 31:10 are
reserved. Refer to Section 7.3.6.

0000 03FF

244 I_RANGE1_EN R/W Writing a 1 in a given bit position enables instruction
access to this address range for the corresponding
thread. Writing a 0 disables it. Bits 31:10 are
reserved. Refer to Section 7.3.6.

0000 03FF

248 I_RANGE2_EN R/W Writing a 1 in a given bit position enables instruction
access to this address range for the corresponding
thread. Writing a 0 disables it. Bits 31:10 are
reserved. Refer to Section 7.3.6.

0000 03FF

24C-25C Reserved
260 D_RANGE0_HI R/W Data space memory range 0 high (see Note 1). FFFF FFFC
264 D_RANGE1_HI R/W Data space memory range 1 high (see Note 1). FFFF FFFC
268 D_RANGE2_HI R/W Data space memory range 2 high (see Note 1). FFFF FFFC
26C D_RANGE3_HI R/W Data space memory range 3 high (see Note 1). FFFF FFFC

270-27C Reserved
280 D_RANGE0_LO R/W Data space memory range 0 low (see Note 1). 0000 0000
284 D_RANGE1_LO R/W Data space memory range 1 low (see Note 1). 0000 0000
288 D_RANGE2_LO R/W Data space memory range 2 low (see Note 1). 0000 0000
28C D_RANGE3_LO R/W Data space memory range 3 low (see Note 1). 0000 0000

290-29C Reserved

Table 7-3 Global Registers

Address Register(s) Read/
Write Description 32-Bit

Reset Value
www.ubicom.com 179

IP51xx Data Sheet – March 28, 2007
For those global registers that have special functions
assigned to bits or fields within the register, the definitions
of those bits and fields are described below.

7.3.1 CHIP_ID

7.3.2 INT_STAT0

2A0 D_RANGE0_EN R/W Writing a 1 in a given bit position enables data access
to this address range for the corresponding thread.
Writing a 0 disables it. Bits 31:10 are reserved. Refer
to Section 7.3.6.

0000 03FF

2A4 D_RANGE1_EN R/W Writing a 1 in a given bit position enables data access
to this address range for the corresponding thread.
Writing a 0 disables it. Bits 31:10 are reserved. Refer
to Section 7.3.6.

0000 03FF

2A8 D_RANGE2_EN R/W Writing a 1 in a given bit position enables data access
to this address range for the corresponding thread.
Writing a 0 disables it. Bits 31:10 are reserved. Refer
to Section 7.3.6.

0000 03FF

2AC D_RANGE3_EN R/W Writing a 1 in a given bit position enables data access
to this address range for the corresponding thread.
Writing a 0 disables it. Bits 31:10 are reserved. Refer
to Section 7.3.6.

0000 03FF

2B0-3FC Reserved
Notes:
1. The address information for these range registers is contained in bits [31:2]. Bits [1:0] are reserved.

Table 7-3 Global Registers

Address Register(s) Read/
Write Description 32-Bit

Reset Value

Bits Description Read-Only
Value

31:16 Chip ID 0002
15:0 Revision number 0001

Bits Description
31 Asynchronous error interrupt
30 Real-time timer interrupt
29 I/O port C, interrupt 2
28 I/O port B, interrupt 2
27 I/O port B, interrupt 1
26 I/O port B, interrupt 0
25 I/O port A, interrupt 2
24 I/O port A, interrupt 1

23:0 Status for 24 software interrupts
180 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.3.3 INT_STAT1

I/O port interrupt bits in INT_STAT0 and INT_STAT 1 give
the status of the associated interrupt bits in I/O blocks and
can not be set or cleared directly using INT_SET1 or
INT_CLR1. These bits correspond to port interrupt
conditions as follows:

• Interrupt 0 – Receive FIFO high watermark condition
• Interrupt 1 – Transmit FIFO low watermark condition
• Interrupt 2 – All other port interrupt conditions

7.3.4 GLOBAL_CTRL

7.3.5 DCAPT (Trap Address)
The DCAPT register contains the Write Trap Address.
This address applies only to general destinations and
data register-only restricted destinations.

If a write is attempted to the address specified by DCAPT,
a trap is triggered and the DCAPT bit is set in the
TRAP_CAUSE register for the participating thread.

The format of the DCAPT register depends on whether
the register specifies an address in the direct address
space or in the indirect or program memory address
space.

For a direct address, the format is as follows:

For an indirect address, the format is as follows:

The DCAPT register is always enabled. However, it can
be loaded with a value that never matches. A value that

Bits Description
31 Breakpoint / trap interrupt
30 Debug port interrupt
29 I/O port E, interrupt 2
28 I/O port E, interrupt 1
27 I/O port E, interrupt 0
26 I/O port D, interrupt 2
25 I/O port D, interrupt 1
24 I/O port D, interrupt 0
23 I/O Port I, Interrupt 2
22 I/O Port I, Interrupt 1
21 I/O Port I, Interrupt 0
20 I/O Port H, Interrupt 2
19 I/O Port G, Interrupt 2
18 I/O Port F, Interrupt 2
17 I/O Port F, Interrupt 1
16 I/O Port F, Interrupt 0
15 I/O USB Port, Interrupt 2

14:10 Reserved interrupts
9:0 10 system timer interrupts

Bits Description
31:10 Reserved

9 TRAP_RST_EN. Trap Reset Enable. If this
bit is set, then the occurrence of any enabled
trap will cause a chip reset.

8 AERROR_RST_EN. Asynchronous Error
Reset Enable. If this bit is set, then the
occurrence of any Protocol C asynchronous
error (on the instruction port or the data port)
will cause a chip reset.

7 Reserved

6:3 MT_MIN_DELAY. Minimum Instruction
Delay. The minimum number of clock cycles
between successive execution slots for a
thread. This setting applies to threads whose
bit is set in the MT_MIN_DELAY_EN
register.

2 HRT_BANK_Select. Selects one of two HRT
tables. This bit is sampled only when an end-
of-table bit is encountered in the HRT table.
This ensures that the current table is always
completed before a new one is started.

0 selects Table 0
1 selects Table 1

1 Reserved
0 INT_EN. Interrupt Enable. 0 disables

interrupts. 1 enables interrupts.

Bits Description
31:14 Must be 0.
13:10 Thread number (0 for global registers).

9:2 Register number (8 most significant bits of
the register address).

1 Reserved
0 Equal to 1 to specify direct address space.

Bits Description
31:2 Indirect address

1 Reserved
0 Equal to 0 to specify indirect address space.

Bits Description
www.ubicom.com 181

IP51xx Data Sheet – March 28, 2007
can never match is one that has bit 0 equal to 1 and bits
31:14 not equal to all 0's; for example: 0x8000 0001.

7.3.6 Memory Protection
Any thread is permitted to read and write to any direct
space register. However, execution from instruction
space and reads and writes to the indirect space are
permitted only if these operations are enabled for the
executing thread and the address being accessed. There
are three pairs of address range registers for the
instruction space (I_RANGE[0:2]_HI/LO) and four pairs
for the data space (D_RANGE[0:3]_HI/LO). Additionally,
each range pair has a corresponding active-high thread
enable mask (I_RANGE[0:2]_EN) or
(D_RANGE[0:3]_EN). If an instruction fetch or indirect
space data access falls within the inclusive range defined
by one of the appropriate range pairs, and that range is
enabled for the executing thread, then the access is
permitted. Otherwise, it is trapped, with one (or more) of
three possible causes set in the executing thread’s
TRAP_CAUSE register:

• DST_RANGE_ERR
• SRC1_RANGE_ERR
• I_RANGE_ERR

7.4 HRT Tables
There are two HRT tables:

• HRT0 at addresses 00000800–0000083C
• HRT1 at addresses 00000900–0000093C

At any given time, one of the two HRT tables is active and
being used by the CPU; the other is available for updates.
The HRT Table Select bit in the GLOBAL_CTRL register
determines which is the active table.

Each HRT table is composed of 64 8-bit entries. Four 8-bit
entries are packed into a 32-bit word, as shown in Table
7-4.

Table 7-4 HRT Word (Four HRT Table Entries)

Name Bits Read/
Write Description Reset value

HRT_END0 31 RW 1 indicates end of HRT table C0C0C0C0
HRT_NO_THREAD0 30 RW 1 indicates unoccupied entry

0 indicates occupied entry
29:28 Reserved

HRT_TNUM0 27:24 RW HRT thread number
HRT_END1 23 RW 1 indicates end of HRT table
HRT_NO_THREAD1 22 RW 1 indicates unoccupied entry

0 indicates occupied entry
21:20 Reserved

HRT_TNUM1 19:16 RW HRT thread number
HRT_END2 15 RW 1 indicates end of HRT table
HRT_NO_THREAD2 14 RW 1 indicates unoccupied entry

0 indicates occupied entry
13:12 Reserved

HRT_TNUM2 11:8 RW HRT thread number
HRT_END3 7 RW 1 indicates end of HRT table
HRT_NO_THREAD3 6 RW 1 indicates unoccupied entry

0 indicates occupied entry
5:4 Reserved

HRT_TNUM3 3:0 RW HRT thread number
182 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.5 On-Chip Peripherals
The On-Chip Peripherals registers reside in the indirect
address space at locations 0100 0000 – 0100 0FFC.

This 4K byte range provides room for 16 peripherals, each
having 256 bytes (64 x 4-byte registers) available.

Address ranges for the on-chip peripherals are as follows:

Section 7.5.1 through Section 7.5.10 shows details for
these groups of registers.

Address Range Peripheral
0100 0000 – 0100 00FC General Configuration
0100 0100 – 0100 01FC Timer Registers
0100 0200 – 0100 02FC TRNG — True Random

Number Generator
0100 0300 – 0100 03FC Debug Port
0100 0400 – 0100 04FC Security Module
0100 0500 – 0100 05FC ICCR — Instruction Cache

Control Registers
0100 0600 – 0100 06FC DCCR — Data Cache Con-

trol Registers
0100 0700 – 0100 07FC OCMC — On-Chip Memory

Control
0100 0800 – 0100 08FC Statistics Counters
0100 0900 – 0100 09FC MTEST — Memory Test
0100 0A00 – 0100 0AFC

Reserved

0100 0B00 – 0100 0BFC
0100 0C00 – 0100 0CFC
0100 0D00 – 0100 0DFC
0100 0E00 – 0100 0EFC
0100 0F00 – 0100 0FFC
www.ubicom.com 183

IP51xx Data Sheet – March 28, 2007
7.5.1 OCP General Configuration
This group of registers control the overall configuration of
the on-chip peripheral block. Table 7-5 shows details for
each register.

Table 7-5 OCP General Configuration Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0000 OCP_CLK_

CORE_CFG
Core PLL configuration register R/W 8000 0080

31 Security Module clock enable
30 Core PLL enable saturation.
29 Core PLL fast lock enable

28:23 Core PLL reference divider
22:11 Core PLL multiplier
10:8 Core PLL output divider

7 Core PLL reset
1: Resets the core PLL
0: Normal operation

6 Core PLL bypass
1: Puts the core PLL into bypass mode
0: Normal operation

5 Core PLL powerdown
1: Puts the core PLL into powerdown mode
0: Normal operation

4 Core clock source select
1: PLL is the source for clk_core
0: sys-refclk is the source for clk_core

3:0 Core clock forward divider. The PLL output is divided by
(forward divider +1). This allows for divide values from 1 to 16.
184 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0100 0004 OCP_CLK_
IO_CFG

I/O PLL configuration register R/W 0103 E080
31 Reserved
30 I/O PLL enable saturation.
29 I/O PLL fast lock enable

28:23 I/O PLL reference divider
22:11 I/O PLL multiplier
10:8 I/O PLL output divider

7 I/O PLL reset
1: Resets the I/O PLL
0: Normal operation

6 I/O PLL bypass
1: Puts the I/O PLL into bypass mode
0: Normal operation

5 I/O PLL powerdown
1: Puts the I/O PLL into powerdown mode
0: Normal operation

4 Core clock source select
1: PLL is the source for clk_io
0: sys-refclk is the source for clk_io

3:0 Reserved
0100 0008 OCP_CLK_

DDR_CFG
DDR PLL configuration register R/W 0000 0080

31 Reserved
30 DDR PLL enable saturation.
29 DDR PLL fast lock enable

28:23 DDR PLL reference divider
22:11 DDR PLL multiplier
10:8 DDR PLL output divider

7 DDR PLL reset
1: Resets the DDR PLL
0: Normal operation

6 DDR PLL bypass
1: Puts the DDR PLL into bypass mode
0: Normal operation

5 DDR PLL powerdown
1: Puts the DDR PLL into powerdown mode
0: Normal operation

4 DDR clock source select
1: PLL is the source for clk_ddr
0: sys-refclk is the source for clk_ddr

3:0 Reserved

Table 7-5 OCP General Configuration Registers (continued)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
www.ubicom.com 185

IP51xx Data Sheet – March 28, 2007
0100 000C OCP_CLK_
DDRDS_CFG

DDR Deskew PLL configuration register R/W 0000 0080
31:13 Reserved
12:11 DDR Deskew PLL multiplier.

Use a value of 00 (multiply by 1) for correct operation.
10:8 Reserved

7 DDR Deskew PLL reset
1: Resets the DDR Deskew PLL
0: Normal operation

6 DDR Deskew PLL bypass
1: Puts the DDR Deskew PLL into bypass mode
0: Normal operation

5 DDR Deskew PLL powerdown
1: Puts the DDR Deskew PLL into powerdown mode
0: Normal operation

4 DDR Deskew clock source select
1: PLL is the source for clk_ddr_out
0: sys-refclk is the source for clk_ddr_out

clk_ddr_out is the DDR clock signal on the DDR bus.
3:0 Reserved

0100 0010 OCP_CLK_
SLIP_CLR

31:0 Reserved for test WO 0000 0000

0100 0014 OCP_CLK_
SLIP_STAT

31:0 Reserved for test RO xxxx xxxx

0100 0030 DDR Cal Ctrl 31:0 DDR Calibrator control register R/W 0000 0000
0100 0034 DDR Cal Stat 31:0 DDR Calibrator status register RO xxxx xxxx
0100 0038 USB DFT Ctrl 31:0 Reserved for test R/W 0000 0000
0100 003C USB DFT Stat 31:0 Reserved for test RO xxxx xxxx
0100 0080 SW Reset 31:1 Reserved WO 0000 0000

0 Software reset. Writing a 1 generates a one-cycle pulse to
the reset module. Writing a 0 has no effect.

Table 7-5 OCP General Configuration Registers (continued)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
186 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0100 0084 Reset
Reasons

Reasons for the last chip reset RO xxxx xxxx
31:19 Reserved

18 Destination memory protection error
17 Source1 memory protection error
16 Write address watchpoint trap
15 Destination synchronous error trap
14 Source1 synchronous error trap
13 Destination operand misalignment error trap
12 Source1 operand misalignment error trap
11 Destination address decode error trap
10 Source1 address decode error trap
9 Illegal instruction trap
8 Instruction synchronous error trap
7 Instruction address decode error trap
6 Data port asynchronous error
5 Instruction port asynchronous error
4 Software reset
3 Debug port reset
2 Watchdog timer reset
1 Power-on reset
0 External reset

0100 0088 Reserved 31:0 Reserved R/W 0000 0000
0100 008C IO PU Config I/O driver cell Power Up Enable signal. When LOW, the

receiver circuits are disabled and draw low current. (Note:
The pads are held disabled during reset, except in Analog
Test Mode / Scan.)

R/W 0000 0007

31:3 Reserved
2 Port H (DDR high group) PU control bit.
1 Port G (DDR low group) PU control bit.
0 Port F (HSTL Pad type) PU control bit.

0100 0090 Reserved 31:0 Reserved R/W 0000 0000

Table 7-5 OCP General Configuration Registers (continued)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
www.ubicom.com 187

IP51xx Data Sheet – March 28, 2007
7.5.2 Timer Registers

Table 7-6 Timer Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0100 MPT_VAL 31:0 The value of the Multipurpose Timer RO 0000 0000
0100 0104 RTCOM 31:0 Real-Time Timer Compare Register R/W 0000 0000
0100 0108 TKEY 31:0 Timer Block's security key code. If TKEY = 0xa1b2c3d4,

then the user can write to WD_COM and WD_CFG.
R/W 0000 0000

0100 010C WD_COM 31:0 Watchdog Compare Register. This register can be written
only if TKEY has the correct value.

R/W 0000 0000

0100 0110 WD_CFG 31:0 Watchdog Configuration Register. This register can be
written only if TKEY has the correct value.

R/W 4d3c 2b1a

0x4d3c2b1a: Disable the Watchdog Register compare.
Other value: Enable the Watchdog Register compare.

0100 0114 SYSVAL 31:0 The value of the System Timer RO 0000 0000
0100 0118 SYS_COM_0 31:0 System Timer Compare Register 0 (INT_STAT1[0]) R/W 0000 0000
0100 011C SYS_COM_1 31:0 System Timer Compare Register 1 (INT_STAT1[1]) R/W 0000 0000
0100 0120 SYS_COM_2 31:0 System Timer Compare Register 2 (INT_STAT1[2]) R/W 0000 0000
0100 0124 SYS_COM_3 31:0 System Timer Compare Register 3 (INT_STAT1[3]) R/W 0000 0000
0100 0128 SYS_COM_4 31:0 System Timer Compare Register 4 (INT_STAT1[4]) R/W 0000 0000
0100 012C SYS_COM_5 31:0 System Timer Compare Register 5 (INT_STAT1[5]) R/W 0000 0000
0100 0130 SYS_COM_6 31:0 System Timer Compare Register 6 (INT_STAT1[6]) R/W 0000 0000
0100 0134 SYS_COM_7 31:0 System Timer Compare Register 7 (INT_STAT1[7]) R/W 0000 0000
0100 0138 SYS_COM_8 31:0 System Timer Compare Register 8 (INT_STAT1[6]) R/W 0000 0000
0100 013C SYS_COM_9 31:0 System Timer Compare Register 9 (INT_STAT1[7]) R/W 0000 0000
188 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.5.3 True Random Number Generator

7.5.4 Debug Port

Table 7-7 True Random Number Generator (TRNG) Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0200 TRNG_CFG True Random Number Generator (TRNG) configuration R/W 0000 0000

31:6 Reserved RO
5 Output of TRNG slow oscillator RO
4 Output of TRNG medium oscillator RO
3 Output of TRNG fast oscillator RO
2 Enable TRNG slow oscillator R/W

1: Enable
0: Disable

1 Enable TRNG medium oscillator R/W
1: Enable
0: Disable

0 Enable TRNG fast oscillator R/W
1: Enable
0: Disable

0100 0204 TRNG_VAL 31:0 32-bit True Random Number Generator (TRNG) value RO FFFF FFFF

Table 7-8 Debug Port (DBG) Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0300 INMAIL 31:0 Incoming Mailbox. Contains data from the external host. RO xxxx xxxx
0100 0304 OUTMAIL 31:0 Outgoing Mailbox. Contains data from the processor. WO xxxx xxxx
0100 0308 MAIL_STAT Mailbox Status RO 5000 0000

31 Incoming mailbox full. Resets to 0 (not full).
30 Incoming mailbox empty. Resets to 1 (empty).
29 Outgoing mailbox full. Resets to 0 (not full).
28 Outgoing mailbox empty. Resets to 1 (empty).

27:0 Reserved. Return 0s on read.
www.ubicom.com 189

IP51xx Data Sheet – March 28, 2007
7.5.5 Security Module

Table 7-9 Security Module Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0400 Security Control Security Module Control Register 0000 0000

31:24 Security Module Reset Command. Code 0xAB causes
“soft reset”, which is the same as a hardware reset, except
for changing the Security Control register.

R/W

23:22 Reserved. Returns 0 when read. RO
21:20 SEC_OUT_OFFSET. Byte offset for output data. Used to

reduce alignment overhead in software.
R/W

19:18 Reserved. Returns 0 when read. RO
17:16 SEC_IN_OFFSET. Byte offset for input data. Used to

reduce alignment overhead in software.
R/W

15:10 Reserved. Returns 0 when read. RO
9:8 SEC_KEY_SIZE. Key size options. See Note 1.

For AES cypher:
R/W

00: 128 bits
01: 192 bits
10: 256 bits
11: Reserved

7:6 Reserved. Returns 0 when read. RO
5:4 SEC_HASH_TYPE: R/W

00: None
01: MD5
10: SHA1
11: Reserved

3 SEC_CBC (supported for AES only): R/W
1: CBC
0: No CBC

2:1 SEC_ALGORITHM: R/W
00: AES
01: None
10: DES
11: Reserved

0 SEC_DIR. Security Direction: R/W
1: Encypher
0: Decypher

0100 0404 Security Status Security Module Status Register RO
31:1 Reserved. Returns 0 when read. RO xxxx xxxx

0 SEC_BUSY: R/W 0x0
1: Security Module is busy cyphering.
0: Security Module is idle.
190 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0100 0410 SEC_KEY_0 31:0 Key register, bits [255:224] R/W 0000 0000
0100 0414 SEC_KEY_1 31:0 Key register, bits [223:192] R/W 0000 0000
0100 0418 SEC_KEY_2 31:0 Key register, bits [191:160] R/W 0000 0000
0100 041C SEC_KEY_3 31:0 Key register, bits [159:128] R/W 0000 0000
0100 0420 SEC_KEY_4 31:0 Key register, bits [127:96] R/W 0000 0000
0100 0424 SEC_KEY_5 31:0 Key register, bits [95:64] R/W 0000 0000
0100 0428 SEC_KEY_6 31:0 Key register, bits [63:32] R/W 0000 0000
0100 042C SEC_KEY_7 31:0 Key register, bits [31:0] R/W 0000 0000
0100 0430 SEC_IN_0 31:0 Input register, bits [159:128] R/W 0000 0000
0100 0434 SEC_IN_1 31:0 Input register, bits [127:96] R/W 0000 0000
0100 0438 SEC_IN_2 31:0 Input register, bits [95:64] (Write here to start DES.) R/W 0000 0000
0100 043C SEC_IN_3 31:0 Input register, bits [63:32] R/W 0000 0000
0100 0440 SEC_IN_4 31:0 Input register, bits [31:0] (Write here to start AES.) R/W 0000 0000
0100 0450 SEC_OUT_0 31:0 Output register, bits [159:128] RO xxxx xxxx
0100 0454 SEC_OUT_1 31:0 Output register, bits [127:96] RO xxxx xxxx
0100 0458 SEC_OUT_2 31:0 Output register, bits [95:64] RO xxxx xxxx
0100 045C SEC_OUT_3 31:0 Output register, bits [63:32] RO xxxx xxxx
0100 0460 SEC_OUT_4 31:0 Output register, bits [31:0] RO xxxx xxxx
0100 0470 HASH_OUT_0 31:0 Hash register, bits [159:128] R/W 0000 0000
0100 0474 HASH_OUT_1 31:0 Hash register, bits [127:96] R/W 0000 0000
0100 0478 HASH_OUT_2 31:0 Hash register, bits [95:64] R/W 0000 0000
0100 047C HASH_OUT_3 31:0 Hash register, bits [63:32] R/W 0000 0000
0100 0480 HASH_OUT_4 31:0 Hash register, bits [31:0] R/W 0000 0000

Notes:
1. DES uses a 64-bit key. For AES, the key size is selected by bits [9:8].

Table 7-9 Security Module Registers (continued)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
www.ubicom.com 191

IP51xx Data Sheet – March 28, 2007
7.5.6 Instruction Cache Control Registers

7.5.7 Data Cache Control Registers

Table 7-10 Instruction Cache Control Registers (ICCR)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0500 ICADDR 31:0 Instruction Cache Address R/W xxxx xxxx
0100 0504 ICRDD 31:0 Instruction Cache Read Data R/W xxxx xxxx
0100 0508 ICWRD 31:0 Instruction Cache Write Data R/W xxxx xxxx
0100 050C ICSTAT Instruction Cache Status 0000 0000

31:0 Reserved. Return 0s on read. RO
0 Cache Bus Error R/W

0100 0510 ICCTRL Instruction Cache Control 0000 0000
31:8 Reserved. Return 0s on read. RO
7:4 OP: ICCR Operation R/W
3 V: ICCR Operation Valid R/W
2 R: Instruction Cache Reset (software) R/W
1 Reserved. Returns 0 on read. RO
0 D: ICCR Operation Done RO

Table 7-11 Data Cache Control Registers (DCCR)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0600 DCADDR 31:0 Data Cache Address R/W xxxx xxxx
0100 0604 DCRDD 31:0 Data Cache Read Data R/W xxxx xxxx
0100 0608 DCWRD 31:0 Data Cache Write Data R/W xxxx xxxx
0100 060C DCSTAT Data Cache Status 0000 0000

31:2 Reserved. Return 0s on read. RO
1 WIDLE: Data Cache Write Queue is idle. R/W
0 Cache Bus Error R/W

0100 0610 DCCTRL Data Cache Control 0000 0000
31:8 Reserved. Return 0s on read. RO
7:4 OP: DCCR Operation R/W
3 V: DCCR Operation Valid R/W
2 R: Data Cache Reset (software) R/W
1 Reserved. Returns 0 on read. RO
0 D: DCCR Operation Done RO
192 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.5.8 On-Chip Memory Control Registers

Table 7-12 On-Chip Memory Control (OCMC) Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0700 OCM_CFG On-Chip Memory Configuration 0000 003F

31:6 Reserved RO
5:0 OCM_BANK_MASK. Code/Data Bank Mask register.

Each bit corresponds to an SRAM bank in the OCM.
LSB corresponds to the bank mapped to the lower OCM
addresses. MSB corresponds to the bank mapped to the
upper OCM addresses.

1:Code Bank
0:Data Bank

R/W

0100 0704 OCM_BIST_
CFG

On-Chip Memory Built-In Self Test Configuration 0000 0000
31:13 Reserved RO

12 WSI. Wrapper serial input. This terminal is used for scan-in
of wrapper instructions and data.

R/W

11 UpdateWR. Update wrapper register. Asserting this signal
while CaptureWR and ShiftWR signals are inactive,
enables update operation for the selected wrapper
register.

R/W

10 SelectWIR. Select wrapper instruction register. Asserting
this signal selects the wrapper instruction register (WIR).
Deasserting this signal selects a data register.

R/W

9 ShiftWR. Shift wrapper register. Asserting this signal while
CaptureWR and UpdateWR signals are inactive, enables
shift operation for the selected wrapper register.

R/W

8 CaptureRW. Capture wrapper register. Asserting this
signal while ShiftWR and UpdateWR signals are inactive,
enables capture operation for the selected wrapper
register.

R/W

7 WRCK. Wrapper clock. This is the clock input of P1500
interface. All P1500 interface registers operate at the
frequency of this clock. WRCK max frequency is 1/10th of
the core clock frequency.

R/W

6 WRST. This register bit is connected through an inverter to
WRSTN. The signal must be asserted for at least one
WRCK cycle. Assertion of this signal will put the P1500
interface into bypass mode. Assertion will also put the
memory into normal operation. The reset condition of this
bit does not reset the SMS or P1500 interface.

R/W

5 reset_sms_a. This pin is connected to reset_sms_a. The
signal must be asserted for at least five core clock cycles.
Assertion of this signal will reset the SMS controller.
Assertion will also put the memory into normal operation.
The reset condition of this bit does not reset the SMS
controller.

R/W
www.ubicom.com 193

IP51xx Data Sheet – March 28, 2007
0100 0704 OCM_BIST_
CFG
(continued)

4 smart. Smart mode. This signal is used to put the SMS into
smart mode. The smart mode signal needs to be held high
for a minimum of five core clock cycles. run_bist and/or
soft_repair needs to be asserted before the smart signal is
asserted. Before the SMS controller can execute smart
mode the SMS controller needs to be reset, or a bypass
instruction needs to be loaded into the WIR.

R/W

3 run_bist. Execute BIST_RUN instruction. High level of this
signal enables execution of BIST_RUN instruction during
smart mode. The run_bist signal should be asserted
before the smart signal is asserted. The signal can be
deasserted after the ready_sms OCM_BIST_STAT register
bit has gone high, signaling the end of smart mode.

R/W

2 soft_repair. Perform soft repair. High level of this signal
enables sequential execution of BIST_RUN and
BISR_RUN instructions during smart mode. The
soft_repair signal should be asserted before the smart
signal is asserted. The signal can be deasserted after the
ready_sms status register bit has gone high, signaling the
end of smart mode.

R/W

1 ext_biste. External BIST enable. This signal is used for
switching between memory functional pins and memory
test pins. High level of this signal enables memory test
pins. This signal is ORed with an internal signal having the
same function and coming from the STAR processor.

R/W

0 dft_mode. Used during ATPG tests to keep memory safe.
High level of this signal sets RM in default value, and
TEST1, AWT, RSCEN and BISTE inputs into inactive state.

R/W

0100 0708 OCM_BIST_
STAT

On-Chip Memory Built-In Self Test Status RO 0000 000x
(see Note 1).31:4 Reserved

3 ready_sms. This signal indicates that the sms controller or
the P1500 controller is ready to take a command. When
the signal is asserted ready_sms also indicates that an
sms controller or a P1500 command has completed.

2 fail_sms. When this signal is asserted and ready_sms is
asserted it indicates that the memory failed the sms or
P1500 command.

1 WSOR. Wrapper serial output. This terminal is used for
scan-out of wrapper instructions and data. It is triggered by
the rising edge of the wrapper clock WRCK.

0 WSO. Wrapper serial output. This terminal is used for
scan-out of wrapper instructions and data. It is triggered by
the falling edge of the wrapper clock WRCK.

Notes:
1. OCM_BIST_STAT[3:0] values remain unknown until the OCM BIST controller is explicitly reset by software. Then:

OCM_BIST_STAT[3] = 1
OCM_BIST_STAT[2] = 0
OCM_BIST_STAT[1] = Unknown
OCM_BIST_STAT[0] = Unknown

Table 7-12 On-Chip Memory Control (OCMC) Registers (continued)

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
194 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.5.9 Statistics Counters
The statistics counters can be used to observe and
analyze the performance of the IP51xx. There are four
sets of registers available for collecting statistics. Each set
consists of a 32-bit configuration register (STS_CFGn)
and an associated 32-bit counter (STS_CNTn). Each

configuration register selects one of 32 events to be
tracked by its associated counter.

Table 7-13 shows the address map for the four statistics
counters. Table 7-14 lists the events that can be selected
by a configuration register.

Table 7-13 Statistics Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0800 STS_CFG0 Statistics Configuration Register 0 0000 0000

31:5 Reserved. Return 0s on read. RO
4:0 Selects an event for STS_CNT0 R/W

0100 0804 STS_CNT0 31:0 Statistics Counter 0 RO xxxx xxxx
0100 0808 STS_CFG1 Statistics Configuration Register 1 0000 0000

31:5 Reserved. Return 0s on read. RO
4:0 Selects an event for STS_CNT1 R/W

0100 080C STS_CNT1 31:0 Statistics Counter 1 RO xxxx xxxx
0100 0810 STS_CFG2 Statistics Configuration Register 2 0000 0000

31:5 Reserved. Return 0s on read. RO
4:0 Selects an event for STS_CNT2 R/W

0100 0814 STS_CNT2 31:0 Statistics Counter 2 RO xxxx xxxx
0100 0818 STS_CFG3 Statistics Configuration Register 3 0000 0000

31:5 Reserved. Return 0s on read. RO
4:0 Selects an event for STS_CNT3 R/W

0100 081C STS_CNT3 31:0 Statistics Counter 3 RO xxxx xxxx

Table 7-14 Selectable Events for Statistics Counters
Event Number Event Source Description

0 Main Processor Instruction issued
1-3 Main Processor Reserved
4 On-Chip Memory On-chip memory access
5 On-Chip Memory On-chip memory request not acknowledged

6-7 On-Chip Memory Reserved
8-12 Reserved
13 Instruction Cache Instruction cache request - not validated
14 Instruction Cache Instruction cache miss - not validated
15 Instruction Cache Instruction cache request not acknowledged - not validated
16 Instruction Cache Instruction cache request - validated
17 Instruction Cache Instruction cache miss - validated
18 Instruction Cache Instruction cache request not acknowledged - validated
19 Instruction Cache Instruction cache miss queue not empty
20 Data Cache Data cache read request
www.ubicom.com 195

IP51xx Data Sheet – March 28, 2007
7.5.10 Memory Test Registers

21 Data Cache Data cache read miss
22 Data Cache Data cache write request
23 Data Cache Data cache write miss
24 Data Cache Data cache miss queue not empty
25 Data Cache Data cache write buffer full
26 Data Cache Data cache request not acknowledged
27 Data Cache Data cache core request
28 Data Cache Data cache miss
29 Data Cache Data cache evict
30 Always active event
31 Null event — never occurs

Table 7-14 Selectable Events for Statistics Counters (continued)
Event Number Event Source Description

Table 7-15 Memory Test Registers

Address Register
Name Bits Description Read/

Write
32-Bit

Reset Value
0100 0900 MTESTADDR 31:0 Memory Address for memory test. Memory word accurate. R/W xxxx xxxx
0100 0904 MTESTWD 31:0 Memory Test Write Data R/W xxxx xxxx
0100 0908 MTESTRD 31:0 Memory Test Read Data R/W xxxx xxxx
0100 090C MTESTCTRL Memory Test Control Register 0000 0000

31 MTEST. Memory Test mode enable R/W
30 WR_EN. Write Enable. Specifies which operation to

perform. Meaningful only when MTESTCTRL[31] = 1.
R/W

1: Write
0: Read

29:12 Reserved. Return 0s on read. RO
11:8 WORD_SEL. Word Select. Select word in a wide memory. R/W
7:4 GROUP_SEL. Group Select. Select a group of memories. R/W
3:0 MEM_SEL. Memory Select. Select a memory inside a

group.
R/W
196 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.6 Per-Port Registers
Each port has a set of registers that constitute the primary
input, output, and control interfaces for that port.

The I/O port registers reside in locations 0200 0000 to
0200 FFFC in the indirect address space. Table 7-16
shows the base addresses. For each port there is a set of
non-blocking registers located at the base address, and a
set of blocking registers located at an offset of 800.

The non-blocking registers are used in normal operation.
Any instructions from a thread that target a non-blocking
region are completed normally, without causing the thread
to be blocked.

Some functions on some ports also use blocking
registers. The blocking registers have two primary uses:

• To configure an I/O controller for use with a particular
thread, as, for example, during initialization.

• To handle situations in which an I/O controller cannot
execute a read operation within the required two clock
cycles. In that case execution of instructions on a
thread can be blocked temporarily, and resumed
when the requested data is available.

Within a given port’s blocking region, the starting offset is
determined by the selected I/O function of that port. The
organization of these blocking regions is very specific to
the devices involved, and will be discussed in the context
of each I/O module.

Table 7-17 shows the set of registers available in the non-
blocking region for each port. The address of each
register is the sum of the port base address (Table 7-16)
and the register address offset (Table 7-17).

The non-blocking registers for the various ports are
similar in number, general format, and general usage, but
differ in particular respects from port to port and from
function to function within each port.

Some functions are common to all or most of the ports;
and those functions are controlled by corresponding
registers and register fields in all the ports. The common
functions are primarily those dealing with function
selection and FIFO management.

Table 7-17 shows the basic address map for the per-port
registers. Table 7-18 gives more detail, and indicates
which registers are generic, and which are I/O port
dependent.

Table 7-16 I/O Port Base Addresses
I/O Port Address Range Offset Description

A 0200 0000 – 0200 0FFC 000 I/O Port A non-blocking region
800 I/O Port A blocking region

B 0200 1000 – 0200 1FFC 000 I/O Port B non-blocking region
800 I/O Port B blocking region

C 0200 2000 – 0200 2FFC 000 I/O Port C non-blocking region
800 I/O Port C blocking region

D 0200 3000 – 0200 3FFC 000 I/O Port D non-blocking region
800 I/O Port D blocking region

E 0200 4000 – 0200 4FFC 000 I/O Port E non-blocking region
800 I/O Port E blocking region

F 0200 5000 – 0200 5FFC 000 I/O Port F non-blocking region
800 I/O Port F blocking region

G 0200 6000 – 0200 6FFC 000 I/O Port G non-blocking region
800 I/O Port G blocking region

H 0200 7000 – 0200 7FFC 000 I/O Port H non-blocking region
800 I/O Port H blocking region

I 0200 8000 – 0200 8FFC 000 I/O Port I non-blocking region
800 I/O Port I blocking region

USB 0200 9000 – 0200 9FFC 000 USB Port non-blocking region
800 USB Port blocking region
www.ubicom.com 197

IP51xx Data Sheet – March 28, 2007
The value of bits 2:0 of the Function register (see Table 7-18) determines which of the four functions (Function 0, 1, 2,
or 3) is controlled by the set of registers shown in Table 7-17. One set of these registers exists for each I/O port.

Table 7-17 I/O Port Non-Blocking Region Register Map

Offset Register
Name Description Read/

Write
32-Bit

Reset Value
00 Function Function select, reset, and FIFO configuration R/W 0000 0000
04 GPIO Ctrl GPIO output enable R/W 0000 0000
08 GPIO Out GPIO data output R/W 0000 0000
0C GPIO In GPIO data input RO xxxx xxxx
10 Interrupt Status Interrupt status from selected function RO xxxx xxxx
14 Interrupt Mask Interrupt mask R/W 0000 0000
18 Interrupt Set Interrupt set and one-cycle pulse generation WO xxxx xxxx
1C Interrupt Clear Interrupt clear WO xxxx xxxx
20 Transmit FIFO LO Transmit FIFO low word, bits [31:0] WO xxxx xxxx
24 Transmit FIFO HI Transmit FIFO high word, bits [63:32] WO xxxx xxxx
28 Receive FIFO LO Receive FIFO low word, bits [31:0] RO xxxx xxxx
2C Receive FIFO HI Receive FIFO high word, bits [63:32] RO xxxx xxxx
30 Function Ctrl 0 Function control register 0 R/W 0000 0000
34 Function Ctrl 1 Function control register 1 R/W 0000 0000
38 Function Ctrl 2 Function control register 2 R/W 0000 0000
3C Function Status 0 Function status register 0 RO xxxx xxxx
40 Function Status 1 Function status register 1 RO xxxx xxxx
44 Function Status 2 Function status register 2 RO xxxx xxxx
48 FIFO Watermark FIFO watermark trigger level R/W 0000 0000
4C FIFO Level FIFO current level RO xxxx xxxx
50 GPIO Mask GPIO mask RO 0000 0000
198 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 7-18 gives more detailed definitions for the registers
listed in Table 7-17. Some of these registers are generic
— that is, they have the same definition for all I/O ports
and functions. For these registers, detailed definitions are

given in this table. Some of the other registers in this table
depend on the specific port and function. Details for those
registers are given in the sections covering the individual
ports, beginning in Section 7.7.

Table 7-18 Generic I/O Port Register Definitions (Non-Blocking Region)

Offset Register
Name Bits Description Read/

Write Reset Value

00 Function Function select, reset, and FIFO configuration
31:22 Reserved RO 0x000

21 RX FIFO TNUM EN. Enables Receive FIFO LO register
thread number checking. When this bit is set, the value
programmed in the RX FIFO TNUM field is checked against
the thread number of each request that attempts to access
the Receive FIFO LO register. Only requests from the
matching thread are processed. Requests from other threads
are dropped and would cause a synchronous error.

R/W 0x0

20:16 RX FIFO TNUM. The number of the thread that is allowed to
access the I/O port Receive FIFO LO register.

R/W 0x00

15:13 Reserved RO 0x0
12:8 Blocking region thread number. The number of the thread

that is allowed to access the blocking region for this port.
If a function does not use blocking registers, then this field is
reserved.

R/W 0x00

7:4 Function reset.
Asserting these bits resets the corresponding functions:

Bit 7=1 resets Function 4 (not used in IP51xx).
Bit 6=1 resets Function 3.
Bit 5=1 resets Function 2.
Bit 4=1 resets Function 1.
There is no reset needed for Function 0.

Note: These bits are static and must be deasserted in order
to allow the functions to come out of reset.

R/W 0x0

3 RX FIFO Select. Selects the receive FIFO to access: R/W 0x0
1: Selects Receive FIFO 1
0: Selects Receive FIFO 0

2:0 Function select:
0x0 selects Function 0.
0x1 selects Function 1.
0x2 selects Function 2.
0x3 selects Function 3.
0x4 to 0x7 are reserved.

The reset value of this field is I/O port dependent.

R/W See Table 7-19.

04 GPIO Ctrl 31:0 GPIO Output Enable. A 1 is any bit position enables the
output buffer corresponding to that specific bit. A 0 disables
it.

R/W 0x00000000

08 GPIO Out GPIO Data Output. With the corresponding GPIO Ctrl bit
enabled, the value in this register will be driven by the
enabled output buffer.

R/W 0x00000000
www.ubicom.com 199

IP51xx Data Sheet – March 28, 2007
0C GPIO In GPIO Data Input. This register reflects the current state of the
external I/O pins. The function of this register is unaffected by
any other register settings.

RO OxXXXXXXXX

10 Interrupt Status 31:16 Reserved RO Ox00000000
15 TX FIFO UF. Transmit FIFO Underflow interrupt — set when

the transmit FIFO is read from while it is empty.
14 TX FIFO WM. Transmit FIFO Watermark interrupt — set

when the transmit FIFO contains a number of entries equal to
or less than the value set in the TX FIFO WM field of the
FIFO Watermark register.

13 RX FIFO OF. Receive FIFO Overflow interrupt — set when
the receive FIFO is written when filled to its capacity.

12 RX FIFO WM. Receive FIFO Watermark interrupt — set
when the receive FIFO contains a number of entries equal to
or greater than the value set in the RX FIFO WM field of the
FIFO Watermark register.

11:0 Function interrupts. These interrupts are set when the
corresponding input signals fn_int[11:0]are driven high.
For details, see the individual port / function register
descriptions (starting in Section 7.7).

14 Interrupt Mask 31:16 Reserved RO 0xXXXX
15:0 A one in a given bit position enables the corresponding

interrupt in the Interrupt Status register.
R/W 0x0000

18 Interrupt Set Interrupt set and one-cycle pulse generation WO Ox00000000
31 TX FIFO Reset. Writing a 1 to this bit resets the Transmit

FIFO.
30 RX FIFO Reset. Writing a 1 to this bit resets the Receive

FIFO selected by the RX FIFO Select bit in the Function
register.

29 Reserved
28:16 Set[12:0]. Writing a 1 to a given bit position produces a one-

cycle pulse on the corresponding output signal set[12:0]
to the function blocks.

15:0 Interrupt Set. Writing a 1 to a given bit position sets the
corresponding bit in the Interrupt Status register.

1C Interrupt Clear 31:16 Reserved WO 0x0000
15:0 Interrupt Clear. Writing a 1 to a given bit position clears the

corresponding bit in the Interrupt Status register.
WO 0x0000

20 Transmit FIFO LO 31:0 Transmit FIFO data [31:0] WO OxXXXXXXXX
24 Transmit FIFO HI 31:0 Transmit FIFO data [63:32] WO OxXXXXXXXX
28 Receive FIFO LO 31:0 Receive FIFO data [31:0] RO OxXXXXXXXX
2C Receive FIFO HI 31:0 Receive FIFO data [63:32] RO OxXXXXXXXX
30 Function Ctrl 0 Function Control register 0. Control signals to function

blocks. For details, see the individual port/function register
descriptions (starting in Section 7.7). The reset value is I/O
port and function dependent.

R/W 0x00000000

Table 7-18 Generic I/O Port Register Definitions (Non-Blocking Region) (continued)

Offset Register
Name Bits Description Read/

Write Reset Value
200 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
34 Function Ctrl 1 Function Control register 1. Control signals to function
blocks. For details, see the individual port/function register
descriptions (starting in Section 7.7). The reset value is I/O
port and function dependent.

R/W 0x00000000

38 Function Ctrl 2 Function Control register 2. Control signals to function
blocks. For details, see the individual port/function register
descriptions (starting in Section 7.7). The reset value is I/O
port and function dependent.

R/W 0x00000000

3C Function Status 0 Function Status register 0. Status signals from function
blocks. For details, see the individual port/function register
descriptions (starting in Section 7.7).

RO OxXXXXXXXX

40 Function Status 1 Function Status register 1. Status signals from selected
function. For details, see the individual port/function register
descriptions (starting in Section 7.7).

RO OxXXXXXXXX

44 Function Status 2 Function Status register 2. Status signals from function
blocks. For details, see the individual port/function register
descriptions (starting in Section 7.7).

RO OxXXXXXXXX

48 FIFO Watermark 31:16 TX FIFO WM. Triggering level for the Transmit FIFO
Watermark interrupt.

R/W 0x00000000

15:0 RX FIFO WM. Triggering level for the Receive FIFO
Watermark interrupt.

4C FIFO Level 31:16 TX FIFO WM. Transmit FIFO current level. RO OxXXXXXXXX
15:0 RX FIFO WM. Receive FIFO current level.

50 GPIO Mask 31:0 GPIO Mask register. When a bit in this register is set to 1, the
corresponding bit in the I/O port is allocated as a GPIO pin,
regardless of whether the selected function uses that pin or
not. The value in this register overrides the effect of function
select on a bit-by-bit basis.

R/W 0x00000000

Table 7-18 Generic I/O Port Register Definitions (Non-Blocking Region) (continued)

Offset Register
Name Bits Description Read/

Write Reset Value
www.ubicom.com 201

IP51xx Data Sheet – March 28, 2007
Table 7-19 gives an overview of the possible I/O Port
allocations. For each port, the table shows the port width
(number of signal pins), which interrupts are used, which

functions can be selected, the function select reset value,
and the size of the available receive and transmit FIFOs.

The following sections describe how the per-port registers
are used when specific port / function combinations are
selected.

NOTE: When a register is not mentioned, its function is
the same as the generic descriptions given in Table 7-18.

Table 7-19 I/O Port and Function Mapping

Port Port
Width

Interrupts
Used a

a. int[0]: Receive FIFO high watermark condition
int[1]: Transmit FIFO low watermark condition
int[2]: All other port interrupt conditions

Function 0 Function 1 Function 2 Function 3
Function

Select
Reset
Value

RX FIFO
Size

TX FIFO
Size

A 8 int[2:1] GPIO Flash /
INT /
Clock

GPIO /
INT / Clock

GPIO / INT 0x1 N/A 8 x 32

B 20 int[2:0] GPIO PCI --- --- 0x0 32 x 36 32 x 36
C 32 int[2] GPIO PCI

(I/O only)
Reserved --- 0x0 N/A N/A

D 12 int[2:0] GPIO Serdes
(240 MHz)

Reserved --- 0x0 16 x 32 16 x 32

E 8 int[2:0] GPIO Serdes
(250 MHz)

Reserved MII / RMII 0x0 2 - 16 x 32 16 x 32

F 16 int[2:0] GPIO GMAC
(MII / RMII /
RGMII)

--- --- 0x0 2 - 32 x 32 16 x 32

G 32 int[2] GPIO DDR
SDRAM

--- --- 0x0 N/A N/A

H 10 int[2] GPIO DDR
SDRAM

--- --- 0x0 N/A N/A

I 12 int[2:0] GPIO N/A Reserved MII (Port E
Extension)

0x0 N/A N/A

USB
Port

2 int[2] N/A High-Speed
USB

N/A N/A 0x0 N/A N/A
202 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.7 Port A Registers
Port A includes support for the external flash memory controller. Once program code has been downloaded into the
on-chip RAM, and when not accessing the flash memory, Port A pins can be used for GPIO functionality.

7.7.1 Port A Function 1 (Flash / INT / Clock)
This section describes the function-specific attributes of the registers used when Port A Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

Function 1 controls the external serial flash memory (using an SPI interface), in addition to certain interrupts and clocks.

The flash controller uses only non-blocking registers.

7.7.1.1 Port A Flash Interrupt Status

7.7.1.2 Port A Flash Interrupt Set

7.7.1.3 Port A Flash Function Control 0

Bits Field Name Description Read/
Write Reset Value

31:12 Refer to Table 7-18. RO 0x00000000
11 P_INT[2] Peripheral interrupt 2 Port_A[6] RO
10 P_INT[1] Peripheral interrupt 1 Port_A[5] RO
9 P_INT[0] Peripheral interrupt 0 Port_A[4] RO

8:1 Reserved RO
0 FC_DONE The flash controller transaction has completed. RO

Bits Field Name Description Read/
Write Reset Value

31 Refer to Table 7-18. WO 0x00000000
30:17 Reserved WO

16 FC_START Start IOPCS transaction. WO
15:0 Refer to Table 7-18. WO

Bits Field Name Description Read/
Write Reset Value

31:24 CACHE_RD_CMD Cache Read command for external flash. This is the common read
command for all supported flash devices.

R/W 0x03

23:21 CACHE_DMY_CT Cache Dummy Byte Count. R/W 0x0
20:19 P_INT_CFG[2] Configuration for Peripheral Interrupt 2 R/W 0x0
18:17 P_INT_CFG[1] Configuration for Peripheral Interrupt 1 R/W 0x0
16:15 P_INT_CFG[0] Configuration for Peripheral Interrupt 0 R/W 0x0
14:8 FC_CLK_WIDTH Number of core clock cycles per SPI clock cycle. R/W 0x28
www.ubicom.com 203

IP51xx Data Sheet – March 28, 2007
7.7.1.4 Port A Flash Function Control 1

7.7.1.5 Port A Flash Function Control 2

7.7.1.6 Port A Flash Function Status 0

7.7.1.7 Port A Flash Function Status 1

7:2 FC_CE_WAIT Number of SPI clock cycles that SPI CE_N (chip select) must be
held de-asserted (HIGH) between consecutive SPI transactions.

R/W 0x28

1 FC_CACHE_
LOCKOUT

Cache lockout bit. When set to 1, cache is inhibited from getting
access to the SPI bus. The flash controller will continue to queue
cache transactions to be completed when it is deasserted.

R/W 0x0

0 FC_EN FC enable. This signal is ON by default. Deasserting FC_EN will
result in the FC arbiter inhibiting all access to the SPI interface,
after any pending transactions are completed.

R/W 0x1

Bits Field Name Description Read/
Write Reset Value

31:30 FCX_INST FC Instruction for transactions. R/W 0x0
29:24 Reserved R/W 0x0
23:16 P_CLK_CFG[1] Configuration for Interrupt Peripheral Clock Divider 1

(core clock source)
R/W 0x0

15:14 Reserved R/W 0x0
13:4 FCX_DATA_CT Transaction data byte count. The number of bytes of data to be

read / written to the external flash.
R/W 0x0

3:1 FCX_DMY_CT Transaction dummy byte count. The number of dummy bytes to
be inserted before read / write data.

R/W 0x0

0 FCX_ADDR_
EXISTS

The transaction has an address. If true, the SPIMaster state
machine will sequence the contents of the FCX_ADDR to be part
of the constructed transaction.

R/W 0x0

Bits Field Name Description Read/
Write Reset Value

31:24 FCX_CMD Transaction command to be put on the SPI bus. R/W 0x0
23:0 FCX_ADDR Transaction address to be put on the SPI bus. R/W 0x0

Bits Field Name Description Read/
Write Reset Value

31:2 Reserved RO 0x0
1 IOX_ACTIVE Processor I/O transaction is currently being processed. RO 0x0
0 CACHE_ACTIVE Cache transaction is currently being processed. RO 0x0

Bits Field Name Description Read/
Write Reset Value

31 FCX_RDATA Processor I/O transaction read data. RO 0x0000
30:0 Reserved RO 0x0000

Bits Field Name Description Read/
Write Reset Value
204 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.7.1.8 Port A Flash FIFO Watermark

7.7.1.9 Port A Flash FIFO Level

Bits Field Name Description Read/
Write Reset Value

31:16 TX FIFO WM Triggering level for the Transmit FIFO Watermark interrupt. R/W 0x0
15:0 Reserved R/W 0x0

Bits Field Name Description Read/
Write Reset Value

31 TX FIFO Level Transmit FIFO current level. RO 0xXXXX
30:0 Reserved RO 0xXXXX
www.ubicom.com 205

IP51xx Data Sheet – March 28, 2007
7.7.2 Port A Function 2 (GPIO / INT / Clock)
This section describes the function-specific attributes of the registers used when Port A Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

Function 2 controls the GPIO mode, in addition to certain interrupts and clocks.

This function uses only non-blocking registers.

7.7.2.1 Port A Function 2 Interrupt Status

7.7.2.2 Port A Function 2 Function Control 0

7.7.2.3 Port A Function 2 Function Control 1

7.7.3 Port A Function 3 (GPIO / INT)
Function 3 controls the GPIO mode, in addition to certain interrupts.

The registers are the same as for Port A Function 2, except that Function Control 1 (which controls clocks) and Function
Control 2 are not used.

This function uses only non-blocking registers.

Bits Field Name Description Read/
Write Reset Value

31:16 Reserved RO 0x0000
15:12 FIFO Status. Not used for this function selection. RO 0x0

11 P_INT[2] Peripheral interrupt 2 Port_A[6] RO 0x0
10 P_INT[1] Peripheral interrupt 1 Port_A[5] RO 0x0
9 P_INT[0] Peripheral interrupt 0 Port_A[4] RO 0x0

8:0 Function interrupts. These interrupts are set when the corresponding input signals
fn_int[8:0]are driven high.

RO 0x000

Bits Field Name Description Read/
Write Reset Value

31:21 Reserved R/W 0x000
20:19 P_INT_CFG[2] Configuration for peripheral interrupt 2 R/W 0x0
18:17 P_INT_CFG[1] Configuration for peripheral interrupt 1 R/W 0x0
16:15 P_INT_CFG[0] Configuration for peripheral interrupt 0 R/W 0x0
14:0 Reserved R/W 0x0000

Bits Field Name Description Read/
Write Reset Value

31:24 P_CLK_CFG[0] Configuration for interrupt peripheral clock divider 0 (250 MHz
clock source)

R/W 0x00

23:16 P_CLK_CFG[1] Configuration for interrupt peripheral clock divider 1 (core clock
source)

R/W 0x00

15:0 Reserved R/W 0x0000
206 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.8 Port B Registers

7.8.1 Port B Function 1 (PCI)
This section describes the function-specific attributes of the registers used when Port B Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

The PCI interface uses both non-blocking registers and blocking registers. The non-blocking registers are listed first.

Notes:

1. The Function Control, Interrupt Mask, and FIFO Watermark non-blocking registers return to their reset values
during a chip reset only.

2. The FIFO Level non-blocking register returns to its reset value only after a FIFO flush, which is accomplished by
writing 1s to the MAX_TX_FLUSH, MAX_RX_FLUSH, TAR_TX_FLUSH, and TAR_RX_FLUSH bits in the
Interrupt Set non-blocking register.

7.8.1.1 Port B PCI Function Register

7.8.1.2 Port B PCI Interrupt Status

Bits Field Name Description Read/
Write Reset Value

31:13 Reserved RO 0x00000000
12:8 BR_TNUM Blocking region thread number. The number of the thread that is

allowed to access the blocking region for this port.
R/W

7:5 Not applicable to the PCI function. RO
4 FN_RESET Setting this bit will stop the PCI clock generator output and put the

entire PCI function into the reset state. It will remain in the reset
state until FN_RESET is cleared. The PCI clock generator is
activated (in Function Ctrl 0) by setting PCI_CLK_OUT_ENA and
writing a non-zero value to PCI_CLK_DIV; finally PCI_RST_N is
set (deasserted). Bringing the PCI function out of reset should be
performed in this order, while also ensuring the minimum required
power-on / reset assertion of 100 ms (PCIv2.2 specification)
before deasserting PCI_RST_N].

R/W

3 RX_FIFO_SEL There is no RX FIFO 1 in the PCI interface. Setting this bit has no
effect. RX FIFO 0 is always selected.

R/W

2:0 FN_SEL ‘3h1 selects PCI. If the PCI function is not selected, it will be held
in the reset state and the PCI clock generator will be forced
inactive.

R/W

Bits Field Name Description Read/
Write Reset Value

31:16 Reserved RO 0x0000
15 TX_FIFO_UF Not applicable to PCI function. IO TX FIFO underflow is

prevented.
RO 0

14 TX_FIFO_WM This interrupt is occurs when there are more than
(32-FIFO_Watermark [TX_FIFO_WM]) FIFO entries free. For
details see Section 5.10.4.2.

RO 1

13 RX_FIFO_OF Not applicable to PCI function. I/O RX FIFO overflow is prevented. RO 0
www.ubicom.com 207

IP51xx Data Sheet – March 28, 2007
7.8.1.3 Port B PCI Interrupt Set

12 RX_FIFO_WM This interrupt is present when the RX FIFO contains a number of
entries greater than or equal to the value set in
FIFO_Watermark [RX_FIFO_WM].

RO 1

11 IO_INTA An interrupt has been triggered at the corresponding I/O pin.
Configure the behavior of this interrupt in
Function_Ctrl_0 [IO_INTA_MODE].

RO 0

10 ARB_GNT_
TIMEOUT

The PCI Arbiter granted a requesting master; however no access
was started within 16 PCI clock cycles. ARB_GNT_TIMEOUT_ID
in Function Status 1 reports the Master that caused the timeout
condition. ARB_GNT_TIMEOUT_CLR must be set in the Interrupt
Set register to enable capture of a subsequent misbehaving
Master.

RO 0

9 MAS_TRDY_ERR Master detected that the target has inserted more wait states than
the number programmed into the TRDY Count configuration
register (located at address 0x49 in the blocking region).

RO 0

8 MAS_RETRY_
ERR

Master detected that the target has responded with ‘retry’ more
times than the number programmed into the Retry Count
configuration register (located at address 0x48 in the blocking
region).

RO 0

7 MAS_DET_SERR Master detected SERR# asserted by the addressed target. RO 0
6 MAS_DET_PERR Master detected that PERR# was asserted during a write transfer,

or master asserted PERR# itself during a read.
RO 0

5 MAS_TAR_
ABORT

Master detected that a target responded with a target abort
condition.

RO 0

4 MAS_MAS_
ABORT

Master aborted because no target has responded with DEVSEL#. RO 0

3 MAS_COMPLETE Indicates that the MPCI32 core has completed a transaction on
the PCI bus. The error flags should be checked (Interrupt
Status [9:4]). If no error flag was set, the master has either
transmitted all data (write operation) or received all data (read
operation). There may still be data in the RX FIFO to be read.

RO 0

2 TAR_DISCARD_
ERROR

A master has tried a delayed read to a non-prefetchable memory
target and has failed to retry the transfer with the same address /
command code etc. after being told to do so by the target. To
prevent bus lockup; data still waiting in the TX FIFO will be flushed
after 32768 PCI clock cycles and this error will be signaled.

RO 0

1 TAR_WRITE_OP_
DONE

The current write operation to this PCI target has completed. RO 0

0 TAR_NEW_CMD A new PCI command has been claimed by the PCI target
interface. Function Status 1 [TAR_NEW_CMD] is set. A new PCI
command and address is valid. If there was a read operation to
this target in progress; this interrupt also signals the completion of
that operation; thus the TX FIFO should be flushed before
continuing. The new PCI command and address is waiting to be
read and decoded from the Function Status registers.

RO 0

Bits Field Name Description Read/
Write Reset Value
208 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.8.1.4 Port B PCI Transmit FIFO LO

7.8.1.5 Port B PCI Transmit FIFO HI

Bits Field Name Description Read/
Write Reset Value

31 IO_TX_FIFO_
RESET

Flush only the IO TX FIFO. It is recommended to use
MAS_TX_FLUSH or TAR_TX_FLUSH instead.

WO 0

30 IO_RX_FIFO_
RESET

Flush only the IO RX FIFO. It is recommended to use
MAS_RX_FLUSH or TAR_RX_FLUSH instead.

WO 0

29:25 Reserved WO 0x00
24 ARB_GNT_

TIMEOUT_CLR
If an ARB_GNT_TIMEOUT interrupt has occurred, a write to this
bit must be performed in order to allow a subsequent master to
generate the ARB_GNT_TIMEOUT interrupt again.

WO 0

23 MAS_TX_FLUSH Flushes both the IO TX FIFO and the Master’s Async TX FIFO in
the PCI core. Use before initiating a Master write transaction.

WO 0

22 MAS_RX_FLUSH Flushes both the IO RX FIFO and the Master’s Async RX FIFO in
the PCI core. Use before initiating a Master read transaction.

WO 0

21 MAS_FORCE_
TERM

Forces the master to terminate a transaction in progress before
the word count has been exhausted. The core will terminate the
transaction on the PCI bus in an orderly fashion.

WO 0

20 MAS_PCI_REQ Initiate a new master request. Write to this bit after the desired
command code; starting address; receive byte enables; etc. and
any necessary Data / BEs has been written to TX FIFO (for master
write commands).

WO 0

19 TAR_TX_FLUSH Flushes both the IO TX FIFO and the Target’s Async TX FIFO in
the PCI core. Use at initial response to a new target read
command before ACKing to PCI core.

WO 0

18 TAR_RX_FLUSH Flushes both the IO RX FIFO and the Target’s Async TX FIFO in
the PCI core.

WO 0

17 TAR_FORCE_
ABORT_NEXT

Manually force the PCI core to respond to the next transaction in
its address ranges with a target abort.

WO 0

16 TAR_PCI_ACK Manually force an acknowledge to the PCI core. WO 0
15:0 Interrupt Set Writing a 1 to a given bit position sets the corresponding bit in the

Interrupt Status register.
WO 0x0000

Bits Field Name Description Read/
Write Reset Value

31:0 TX_DATA Data to TX FIFO. The write pointer in this FIFO will automatically
increment after writing data to this address.

WO 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:4 Reserved WO 0xXXXXXXXX
3:0 TX_DATA_BE Byte Enables for data to TX FIFO. WO
www.ubicom.com 209

IP51xx Data Sheet – March 28, 2007
7.8.1.6 Port B PCI Receive FIFO LO

7.8.1.7 Port B PCI Receive FIFO HI

7.8.1.8 Port B PCI Function Control 0

Bits Field Name Description Read/
Write Reset Value

31:0 RX_DATA Data from RX FIFO. The read pointer in this FIFO will
automatically increment after reading data from this address.

RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:4 Reserved RO 0xXXXXXXXX
3:0 TX_DATA_BE Byte Enables for data from RX FIFO. RO

Bits Field Name Description Read/
Write Reset Value

31 ARB_SM_RST_N PCI Arbiter State Machine reset: R/W 0
1: The State Machine is allowed to behave normally; bus

parks at last requesting device.
0: The State Machine is held in the reset state; no PCI

device is granted.
Note: If the State Machine is reset, the current grant will be pulled
away immediately, synchronous with the PCI BUS clock. The PCI
specification states that it is legal to pull a grant away at any time.

30 ARB_SM_SEL PCI Arbitration method select: R/W 0
1: Host Priority Arbitration
0: Round Robin Arbitration

29 PCI_RST_N Clearing this bit will assert reset on the PCI BUS, the PCI core,
and the I/O FIFOs. It will not reset the clock generator. Until the
PCI clock generator is active this reset control bit will be ignored
and all logic in the PCI function (except the clock generator) and
the I/O FIFOs will be held in reset.

R/W 0

28 PCI_CLK_OUT_
ENA

PCI_CLK output driver enable: R/W 0
1: Enables the PCI_CLK output driver
0: Disable the PCI_CLK output driver. This can allow the use

of an external PCI_CLK source if necessary.
27:24 PCI_CLK_DIV Clock divisor value for the PCI Clock Generator (if the output

driver is enabled).
R/W 0x0

0x0: Stops the PCI clock at the end of the current PCI clock
cycle.

0x1-
0xF:

Valid clock divisors minus 1. The clock frequency is 200
MHz divided by the value of this field + 1. For example,
1 produces 200 MHz / 2 (100 MHz), 2 produces 200 MHz
/ 3 (66 MHz), 3 produces 200 MHz / 4 (50 MHz), etc.
210 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
23 MAS_TAR_IF_SEL Selects the interface from / to which the I/O FIFOs will route data: R/W 0
1: Selects the master interface.
0: Selects the target interface.

Notes:
1. It is recommended to leave the Target interface selected

while the Master interface is inactive.
2. It is okay to switch to Master mode at any time except

when data from a target write still exists in the FIFOs.
3. If software wants to do a Master transaction service, it

must complete any outstanding Target writes first and
should not ACK the Target write until after the Master
transaction has been initiated and completed. This will
prevent potential data corruption by preventing data from
a new Target write from ‘sneaking’ into the FIFO while
switching to Master mode.

22:21 IO_INTA_MODE Configures the behavior of the interrupt signal generated at
Interrupt Status [IO_INTA]:

R/W 0x0

00: Do not generate an interrupt.
01: Generate an interrupt due to a rising edge at the

corresponding I/O pin.
10: Generate an interrupt due to a falling edge at the

corresponding I/O pin.
11: Generate an interrupt due to either a rising or falling edge

at the corresponding I/O pin.
20 RX_BYTE_SWAP PCI Byte Swap RX R/W 0

1: Data in RX FIFO is byte swapped (little endian ⇔ big
endian).

0: Data in RX FIFO is not byte swapped.
19 TX_BYTE_SWAP PCI Byte Swap TX R/W 0

1: Data in TX FIFO is byte swapped (little endian ⇔ big
endian).

0: Data in TX FIFO is not byte swapped.
18 TAR_FORCE_

ABORT
Setting this bit causes the PCI target to respond to all PCI
transactions in its address ranges with a target abort. This may be
useful if the software detects some fatal error and determines that
it can no longer function. Clearing this bit causes the PCI target to
respond normally.

R/W 0

17 TAR_FORCE_
RETRY

Setting this bit causes the PCI target to respond to all PCI
transactions in its address ranges with a retry. This may be useful
if the software performs some initialization routine at startup.
Clearing this bit causes the PCI target to respond normally.

R/W 0

16 TAR_IMMEDIATE_
READS

Clearing this bit forces the PCI target to perform delayed read
transactions. Setting this bit forces the PCI target to perform
immediate read transactions. Delayed reads will cause target to
release the PCI bus while data is being fetched. Immediate reads
will cause target to hold the PCI bus while data is being fetched. It
is not recommend to perform immediate reads unless it can be
guaranteed that data will be available within 16 PCI clock cycles of
[TAR_NEW_CMD] going high; which may be hard to do in a
software driven system.

R/W 0

Bits Field Name Description Read/
Write Reset Value
www.ubicom.com 211

IP51xx Data Sheet – March 28, 2007
7.8.1.9 Port B PCI Function Control 1

7.8.1.10 Port B PCI Function Control 2

7.8.1.11 Port B PCI Function Status 0

15:14 Reserved R/W 0x0
13:8 MAS_WCOUNT The number of 32-bit words to be transferred by the master. The

maximum transfer per master request that can be made is 32
words (128 bytes). This field must be written before the master
transfer is started by setting MAS_PCI_REQ in the Interrupt Set
register.

R/W 0x0

6’h00: illegal
6’h01-
6’h20:

One 32-word burst

6’h21-
6h3F:

illegal

7:4 MAS_RCV_BE Byte enables for a master read command. This should stay the
same for each read cycle. This field must be written before the
master read transfer is started by setting MAS_PCI_REQ in the
Interrupt Set register.

R/W 0x0

3:0 MAS_PCI_CMD The desired PCI command code is written here. The legal
command codes are: I/O Read or Write; Memory Read / Write;
Memory Read Line / Read Multiple; Memory Write+Invalidate; and
Configuration Read / Write. This field must be written before
the master transfer is started by setting MAS_PCI_REQ in the
Interrupt Set register.

R/W 0x0

Bits Field Name Description Read/
Write Reset Value

31:0 MAS_PCI_ADDR Start address for the current PCI transaction when MPCI32 core is
a master. The byte enables fed to the core must tally with address
bits[1:0] for unaligned transfers. This register must be written
before the master transfer is started by setting MAS_PCI_REQ in
the Interrupt Set register.

R/W 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 Reserved R/W 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 TAR_PCI_
ADDRESS

Start address for the current PCI transaction when MPCI32 core is
a target. Valid when TAR_NEW_CMD is set in the Function Status
1 register.

RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value
212 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.8.1.12 Port B PCI Function Status 1

7.8.1.13 Port B PCI Function Status 2

Bits Field Name Description Read/
Write Reset Value

31 ARB_GNT_
TIMEOUT

This bit is set if the PCI Arbiter granted a requesting master; but
no access was started within 16 PCI clock cycles.

RO 0

30:29 ARB_GNT_
TIMEOUT_ID

Identifies the PCI master that caused the most recent
ARB_GNT_TIMEOUT interrupt. This value has no meaning if
ARB_GNT_TIMEOUT (bit 31) is clear.

RO 0x0

00: PCI Device 0
01: PCI Device 1
10: PCI Device 2
11: MPCI32 Host

28:17 Reserved RO 0x000
16 MAS_PCI_

STARTED
The MPCI32 core has latched the supplied MAS_PCI_ADDR
(from Function Ctrl 1), MAS_PCI_CMD (from Function Ctrl 0),
etc., so these registers may be cleared if necessary. Transfer will
begin as soon as PCI bus conditions allow.

RO 0

15:10 Reserved RO 0x00
9 TAR_

PREFETCHABLE
Echoes the state of the ‘prefetchable’ flag (bit 3) in the specified
target’s base address register.

RO 1

8 TAR_NEW_CMD Active when a new transaction on the PCI bus has been claimed
by this target. When this signal goes active; a TAR_NEW_CMD
interrupt is set in the Interrupt Status register. Goes inactive when
the command is acknowledged. ACK can be done manually by
setting TAR_PCI_ACK in the Interrupt Set register.

RO 0

7:6 Reserved RO 0x0
5 TAR_READ A simple hardware decode of TAR_PCI_CMD (bits 3:0) has

determined that this command is a target read operation. All
memory read commands are aliased to the MEMORY READ
command (4’b0110).

RO 0

4 TAR_WRITE A simple hardware decode of TAR_PCI_CMD (bits 3:0) has
determined that this command is a target write operation. All
memory write commands are aliased to the MEMORY WRITE
command (4’b0111).

RO 0

3:0 TAR_PCI_CMD PCI command code for the current target transaction. Valid when
TAR_NEW_CMD (bit 8) is set.

RO 0x0

Bits Field Name Description Read/
Write Reset Value

31:16 CORE_TX_
FIFO_ LVL

The PCI core's TX FIFO level indicator. Valid only after receiving a
TAR_NEW_CMD interrupt and before writing TAR_PCI_ACK. Use
of this indicator is necessary to calculate address linearity if
software chooses to implement data prefetching for Target Reads.

RO 0x0000

15:0 Reserved RO 0x0000
www.ubicom.com 213

IP51xx Data Sheet – March 28, 2007
7.8.1.14 Port B PCI Blocking Region Registers
The PCI blocking region registers are used to configure the PCI core as part of the initialization sequence.

Notes:

1. These registers are byte addressable only. All other move instructions (where more than one byte enable is
asserted on the protocol C bus) will be ignored.

2. The Configuration Register Interface does not support single instruction read-modify-write access (for example,
move.1 from PCI_BR to PCI_BR).

3. The PCI blocking region is Little-Endian!

The PCI Configuration registers reside at offsets 0x00 - 0x4D in the I/O Port B blocking region (see Table 7-16).

Table 7-20 shows the register definitions for the PCI Configuration Registers.

Table 7-20 PCI Configuration Register Definitions

Offset Register
Name Bits Description Read/

Write Reset Value

0x01 – 0x00 Vendor ID 15:0 Unique Manufacturer ID.
Reset value factory-configured.

R/W 0xFFFF

0x03 – 0x02 Device ID 15:0 Unique Device ID.
Identifies the device as per vendor.

R/W 0xFFFF

0x05 – 0x04 Command PCI Configuration Command register R/W 0x0000
15:10 Reserved. Always read zero.

9 Fast Back to Back Enable. Hardwired to zero so that
the master cannot perform fast back-to-back
transfers; but targets can accept them.

8 SERR Enable
7 Not implemented. Always reads zero.
6 Parity Error Response
5 Not implemented. Always reads zero.
4 Memory Write+Invalidate Enable
3 Not implemented. Always reads zero.
2 Bus Master Enable
1 Memory Space Enable
0 I/O Space Enable
214 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x07 – 0x06 Status PCI Configuration Status register R/WS
15 Detected parity error. Latched status bit: write 1 to

reset it.
0x00

14 Signaled system error. Latched status bit: write 1 to
reset it.

13 Received master abort. Latched status bit: write 1 to
reset it.

12 Received target abort. Latched status bit: write 1 to
reset it.

11 Signaled target abort. Latched status bit: write 1 to
reset it.

10:9 DEVSEL timing. Always reads 01 = medium. RO 0x1
8 Master data parity detected. Latched status bit: write

1 to reset it.
0x080

7 Fast back-to-back capable. Always reads as 1
because the target is capable of accepting fast back-
to-back transfers.

6 Reserved. Always reads zero.
5 66-MHz capable. Factory-configured. Set to 1 if the

core can run at 66 MHz.
4 Capabilities list present. Set to 1 if a power

management interface is present. Parameterized as
pwrman_exist.

3:0 Reserved. Always read zero.
0x08 Revision ID 7:0 Reset value parameterized as def_revID. R/W 0x00

0x0B – 0x09 Class Code 24:0 Reset value parameterized as def_classCode. R/W 0xFF0000
0x0C Cache Line Size 7:0 Cache Line Size. All cache line sizes that are powers

of two are supported.
Presented only when master is implemented.

R/W 0x00

0x0D Latency Timer 7:0 Bus Latency Timer. Bits [2:0] are hardwired to zero to
give a granularity of 8 clocks. Presented only when
master is implemented.

R/W 0x00

0x0E Header Type 7:0 Defines Type 0 configuration header layout as per
PCI spec.

RO 0x00

0x0F BIST 7:0 Not implemented. Always reads zero. RO 0x00
0x13 – 0x10 BAR0 31:0 Register-type Target Interface.

Not applicable to the IP51xx, Do not write to BAR0.
RO 0x00000000

Table 7-20 PCI Configuration Register Definitions (continued)

Offset Register
Name Bits Description Read/

Write Reset Value
www.ubicom.com 215

IP51xx Data Sheet – March 28, 2007
0x17 – 0x14 BAR1 FIFO-type Target Interface R/W 0x00000000
0 Memory or I/O space indicator. When bit 0 = 1, the

target is mapped to the I/O space, and bits 31:1 are
defined as follows:

31:2: MSBs written by the system startup software
with the base address of the target address
range. The number of active bits is factory
configured in line with the amount of PCI
Address Space allocated to the target. The
remaining bits are hardwired to zero.

1: From PCI side of core: Reserved; always
reads zero.
From backend interface: As for Memory
space option below.

0 Memory or I/O space indicator. When bit 0 = 0, the
target is mapped to the Memory space, and bits 31:1
are defined as follows:

31:4: MSBs written by the system startup software
with the base address of the target address
range. The number of active bits is factory
configured in line with the amount of PCI
Address Space allocated to the target. The
remaining bits are hardwired to zero.

3: always reads 1. The memory region to which
the target is mapped is prefetchable.

2: always reads 0.
1: always reads 0. Located above 1 MB

address boundary.
0x1B – 0x18 BAR2 31:0 Target channel not implemented. Always reads 0. RO 0x00000000
0x1F – 0x1C BAR3 31:0 Target channel not implemented. Always reads 0. RO 0x00000000
0x23 – 0x20 BAR4 31:0 Target channel not implemented. Always reads 0. RO 0x00000000
0x27 – 0x24 BAR5 31:0 Target channel not implemented. Always reads 0. RO 0x00000000
0x2B – 0x28 Cardbus CIS

Pointer
31:0 Pointer to Cardbus data structure R/W 0x00000000

0x2D – 0x2C Subsystem
Vendor ID

15:0 Two-byte subsystem vendor ID R/W 0x0000

0x2F – 0x2E Subsystem ID 15:0 Two-byte subsystem ID R/W 0x0000
0x33 – 0x30 BIOS ROM BAR 31:0 Not implemented. Always reads 0. R/W 0x00000000

0x34 Capabilities
Pointer

7:0 Points to the first capabilities structure, which will
either be the power management registers at 0x40 or
the vital product data at 0x4C or nothing (0x00).
For the IP51xx PCI function, this register always
points to 0x00.

R/W 0x00

0x3B – 0x35 Reserved RO 0

Table 7-20 PCI Configuration Register Definitions (continued)

Offset Register
Name Bits Description Read/

Write Reset Value
216 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x3C Interrupt Line 7:0 Programmable in a PC environment to a number
between 0 and 15 corresponding to the interrupt
channel assigned to this device.
For information only.

R/W 0xFF

0x3D Interrupt Pin 7:0 Indicates that the device uses INTA. RO 0x01
0x3E Min_GNT 7:0 Minimum requested bus grant duration. R/W 0x00
0x3F Max_LAT 7:0 Maximum requested bus grant latency. R/W 0x00

0x47 – 0x40 Reserved RO 0
0x48 Retry Count 7:0 Holds the number of retries the master may receive

from a target before signaling an error. Zero disables
it.

R/W 0x00

0x49 TRDY Count 7:0 Holds the number of wait states a remote target may
insert in a master initiated transfer before an error is
signaled. Zero disables it.

R/W 0x00

0x4B – 0x4A Reserved RO 0
0x4C Capability ID 7:0 Indicates that the device has VPD (vital product data)

capability. Not applicable to the IP51xx PCI function.
RO 0x03

0x4D Next Item Pointer 7:0 Always reads zero. RO 0x00

Table 7-20 PCI Configuration Register Definitions (continued)

Offset Register
Name Bits Description Read/

Write Reset Value
www.ubicom.com 217

IP51xx Data Sheet – March 28, 2007
7.9 Port D Registers

7.9.1 Port D Function 1 (240 MHz Serdes)
This section describes the function-specific attributes of the registers used when Port D Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

This Serdes interface uses only non-blocking registers.

7.9.1.1 Port D Serdes Function Register

7.9.1.2 Port D Serdes Interrupt Status

Bits Field Name Description Read/
Write Reset Value

31:7 Reserved RO 0x000000
6 Resets Function 3 RO 0x0
5 Resets Function 2 RO 0x0
4 Resets Function 1 Setting this bit will stop the Serdes clock generator and put the

entire Serdes function into the reset state. The Serdes will remain
in the reset state until this bit is cleared.

R/W 0x0

3 RX_FIFO_SEL There is no RX FIFO 1 in the Serdes interface. Setting this bit has
no effect. RX FIFO 0 is always selected.

R/W 0x0

2:0 FN_SEL ‘3h1 selects Serdes. If the Serdes function is not selected, it will
be held in the reset state and the Serdes clock generator will be
forced inactive.

R/W 0x0

Bits Field Name Description Read/
Write Reset Value

31:16 Reserved RO 0x0000
15 TX FIFO UF Not used for Serdes. RO 0x0
14 TX FIFO WM Not used for Serdes. RO 0x0
13 RX FIFO OF Receive FIFO Overflow interrupt — set when the receive FIFO is

written when filled to its capacity.
RO 0x0

12 RX FIFO WM Receive FIFO Watermark interrupt — set when the receive FIFO
contains a number of entries equal to or greater than the value set
in the RX FIFO WM field of the FIFO Watermark register.

RO 0x0

11:8 Reserved RO 0x0
7 RXERR Receive Error - Used for USB: The Serdes has detected 7

consecutive 1s.
RO 0xX

6 RXEOP Receive End-Of-Packet - Used for USB (asserted at end of
packet) and GPSI (asserted at de-assertion of RxEn).

RO 0xX

5 SYND Sync Data match - Used for USB: Received data matches sync
pattern (RSYNC[7:0] in Function Ctrl 1).

RO 0xX

4 TXBE Transmit Buffer Empty. RO 0xX
3 TXEOP Transmit End-Of-Packet - Used for USB: Serdes has finished

transmitting all available data and no new data is available. An
EOP is transmitted after the last data.

RO 0xX
218 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.9.1.3 Port D Serdes Interrupt Set

7.9.1.4 Port D Serdes Transmit FIFO LO

7.9.1.5 Port D Serdes Transmit FIFO HI

7.9.1.6 Port D Serdes Receive FIFO LO

7.9.1.7 Port D Serdes Receive FIFO HI

2 SX LP Used for USB: Bus Idle after Serdes stops driving the bus. RO 0xX
1 RXBF Receive Buffer data available RO 0xX
0 RXXCRS Receive Busy - Used for USB: RxBusy is detected. RO 0xX

Bits Field Name Description Read/
Write Reset Value

31 Not used for Serdes. WO 0x0
30 RX FIFO Reset Writing a 1 to this bit resets the Receive FIFO selected by the RX

FIFO Select bit in the Function register.
WO 0x0

29:17 Reserved WO 0x0000
16 TXBUF_VALID Signals to the Serdes that valid transmit data is available. WO 0x0

15:0 Interrupt Set Writing a 1 to a given bit position sets the corresponding bit in the
Interrupt Status register.

WO 0x0000

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for Serdes. WO 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for Serdes. WO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 RX_DATA Data from RX FIFO. Only bits [15:0] are used. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for Serdes. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value
www.ubicom.com 219

IP51xx Data Sheet – March 28, 2007
7.9.1.8 Port D Serdes Function Control 0

7.9.1.9 Port D Serdes Function Control 1

Bits Field Name Description Read/
Write Reset Value

31 GLOBAL_EN Serdes output enable R/W 0x0
1: Enable. Serdes I/O pins are driven from Serdes as

defined by the MODE[7:0] field.
0: Disable (without resetting device). Serdes I/O pins

become accessible through GPIO.
30 LOOP_BACK Loopback control R/W 0x0

1: Enable loopback
0: Disable loopback

29 TX_DATA_INV Invert all transmit data. R/W 0x0
28:24 TXSCNT[4:0] Specifies the number of bits to transmit. R/W 0x00
23:16 MODE[7:0] Serdes mode/submode select: R/W 0x00

23:20: PRS (see Table 6-5).
19:18: SUBM
17:16: Reserved

15:0 CLKDIV[15:0] Divide value used in generating the Serdes internal clock. R/W 0x0000

Bits Field Name Description Read/
Write Reset Value

31:24 SYNCMASK[7:0] Mask for RSYNC[7:0] - Used for USB R/W 0x00
23:16 RSYNC[7:0] Sync pattern - Used for USB R/W 0x00
15:10 Reserved R/W 0x00

9 BIT_ORDER MSB/LSB: R/W 0x0
1: MSB first
0: LSB first

8 CRS_INT_
POLARITY

Carrier sense interrupt polarity: R/W 0x0
1: Interrupt on loss of carrier (RXXCRS)
0: Interrupt on gain of carrier (RXXCRS)

7 SPI_MASTER_
SEL

Master/Slave select - SPI or GPSI only: R/W 0x0
1: Master
0: Slave

6 USB_SYNC_
IGNORE

USB Sync Ignore: R/W 0x0
1: Do not detect sync
0: Detect sync

5 REV_POLARITY_
EN

Reverse Polarity Enable: R/W 0x0
1: Invert received data
0: Do not invert received data

4:0 RXSCNT[4:0] Receive count interrupt level. Number of received bits that will
cause an interrupt.

R/W 0x00
220 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.9.1.10 Port D Serdes Function Control 2

7.9.1.11 Port D Serdes Function Status 0

Bits Field Name Description Read/
Write Reset Value

31:16 Reserved R/W 0x0000
15:0 TXBUF[15:0] Data for transmit operations R/W 0x0000

Bits Field Name Description Read/
Write Reset Value

31:10 Reserved RO 0x000000
9:8 Reserved. Value is undefined when read. RO 0xX
7:5 Reserved RO 0xX
4:0 RXCTR[4:0] Actual number of received bits.

However, the following applies for the last transfer only:
- RXCTR[4:0] = the number of bits received, if fewer than 8.
- RXCTR[4:0] = 8, if >8 and <16 bits are received.
- RXCTR[4:0] = 16 if ≥16 bits are received and RXSCNT = 16.

RO 0xX
www.ubicom.com 221

IP51xx Data Sheet – March 28, 2007
7.10 Port E Registers

7.10.1 Port E Function 1 (250 MHz Serdes)
The registers for this function are the same as those for Port D Serdes (Section 7.9.1), except for the value of the
reference clock frequency (240 MHz for Port D and 250 MHz for Port E) and the fact that USB is supported on Port D
Serdes, but not on Port E Serdes.

7.10.2 Port E Function 3 (MII / RMII)
This section describes the function-specific attributes of the registers used when Port E Function 3 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

This Serdes interface uses only non-blocking registers.

7.10.2.1 Port E MII / RMII Interrupt Status

7.10.2.2 Port E MII / RMII Interrupt Set

Bits Field Name Description Read/
Write Reset Value

31:12 Refer to Table 7-18, Interrupt Status section. RO 0x00000
11:9 Reserved RO 0x0

8 RX_THRESHOLD_
INT

Receive Threshold. The frame currently being received has
reached the threshold at which it will not be discarded (32 bytes).

RO 0xX

7 RX_EOP_INT End-of-packet detected during receive. RO 0xX
6 RX_SFD_INT Start-of-frame delimiter detected during receive. RO 0xX
5 RX_ERR_INT Error detected during receive. RO 0xX
4 TX_EOP_INT Transmit end-of-packet. RO 0xX
3 COL_INT Collision detected during transmission. RO 0xX
2 CRS_INT Carrier sense. RO 0xX
1 ODD_NIB_ERR_

INT
Odd nibble reception error. RO 0xX

0 FALSE_CARRIER_
INT

False carrier message. RO 0xX

Bits Field Name Description Read/
Write Reset Value

31 TX FIFO Reset Writing a 1 to this bit resets the Transmit FIFO. WO 0x0
30 RX FIFO Reset Writing a 1 to this bit resets the Receive FIFO selected by the RX

FIFO Select bit in the Function register.
WO 0x0

29:19 Reserved WO 0x000
18 TX_ERR_SEND Transmit Error Send WO 0x0
17 Reserved. Only write 0 to this bit. WO 0x0
16 TX_START Transmit Start. Writing a 1 to this bit starts transmission. WO 0x0

15:0 Interrupt Set Writing a 1 to a given bit position sets the corresponding bit in the
Interrupt Status register.

WO 0x0000
222 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.10.2.3 Port E MII / RMII Transmit FIFO LO

7.10.2.4 Port E MII / RMII Transmit FIFO HI

7.10.2.5 Port E MII / RMII Receive FIFO LO

7.10.2.6 Port E MII / RMII Receive FIFO HI

7.10.2.7 Port E MII / RMII Function Control 0

Bits Field Name Description Read/
Write Reset Value

31:0 TX_DATA Data to TX FIFO. WO 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for MII / RMII. WO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 RX_DATA Data from RX FIFO. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for MII / RMII. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:23 Reserved R/W 0x000
22 MII_PORT_

SELECT
Set this bit to 1 when using the MII interface. R/W 0x0

21 TX_AUTO_CRC Automatic Transmit of CRC: R/W 0x0
1: Automatically generate TX CRC.
0: Do not automatically generate TX CRC.

20 RMII_SPEED RMII Speed: R/W 0x0
1: 100 Mbps
0: 10 Mbps

19 RMII_MODE Interface Mode: R/W 0x0
1: RMII Mode
0: MII Mode

18 Reserved R/W 0x000
17 HALF_DUPLEX Sets the MII controller into half duplex mode. R/W 0x0

1: Half duplex
0: Full duplex

16 RX_EN Receive Enable: R/W 0x0
1: Enable receive mode.
0: Disable receive mode.

15:0 TX_BYTE_
COUNT[15:0]

Transmit Byte Count. The number of bytes to be transmitted. R/W 0x0000
www.ubicom.com 223

IP51xx Data Sheet – March 28, 2007
7.10.2.8 Port E MII / RMII Function Control 1

7.10.2.9 Port E MII / RMII Function Status 0

Bits Field Name Description Read/
Write Reset Value

31:2 Reserved R/W 0x00000000
1:0 TX_BYTE_

START[1:0]
Transmit Byte Start. The byte number, within a big-endian ordered
word, to be used as the first data byte of a transmit packet:

R/W 0x0

00: Bits [31:24]
01: Bits [23:16]
10: Bits [15:8]
11: Bits [7:0]

Bits Field Name Description Read/
Write Reset Value

31:20 Reserved RO 0x000
19 CRC_OK The CRC sent with the most recently received packet matches the

CRC calculated on the payload of the same packet.
RO 0x000

18 RX_FIFO_
SELECT

Indicates to which FIFO the currently received frame is being
written:

R/W 0x0

1: FIFO 1
0: FIFO 0

17 COLLISION The state of the COL signal after being synchronized to the core
clock domain.

RO 0x000

16 CARRIER_SENSE The state of the CRS signal after being synchronized to the core
clock domain.

RO 0x000

15:0 RX_BYTE_
COUNT[15:0]

Total number of bytes received, including the CRC, but not
including the SFD or any part of the preamble.

RO 0x000
224 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.11 Port F Registers

7.11.1 Port F Function 1 (GMAC)
This section describes the function-specific attributes of the registers used when Port F Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

The GMAC interface uses both non-blocking registers and blocking registers. The non-blocking registers are listed first.

7.11.1.1 Port F GMAC Interrupt Status

7.11.1.2 Port F GMAC Interrupt Set

7.11.1.3 Port F GMAC Transmit FIFO LO

7.11.1.4 Port F GMAC Transmit FIFO HI

Bits Field Name Description Read/
Write Reset Value

31:12 Refer to Table 7-18. RO 0x0000
11:6 Reserved RO 0x00

5 TX_EOF Transmit packet End-Of-Frame RO 0
4 TX_PAR Transmit packet abort RO 0
3 TX_PRT Transmit packet retry RO 0
2 RX_SOF Receive packet Start-Of-Frame RO 0
1 RX_EOF Receive packet End-Of-Frame RO 0
0 RX_PRT Receive packet reached minimum packet size threshold. RO 0

Bits Field Name Description Read/
Write Reset Value

31 TX_FIFO _RESET TX FIFO Reset. Writing a 1 to this bit resets the Transmit FIFO. WO 0
30 RX_FIFO _RESET RX FIFO Reset. Writing a 1 to this bit resets the Receive FIFO

selected by the RX FIFO Select bit in the Function register.
WO 0

29:19 Reserved WO 0x000
18 STOP_PAUSE Writing a 1 to this bit produces a one-cycle pulse that initiates the

transmission of a pause control packet with timer value 0x0000.
WO 0

17 START_PAUSE Writing a 1 to this bit produces a one-cycle pulse that initiates the
transmission of a pause control packet with timer value 0xFFFF

WO 0

16 START_XMIT Writing a 1 to this bit produces a one-cycle pulse that initiates the
transmission of the data packet currently in the TX FIFO.

WO 0

15:0 Interrupt Set Writing a 1 to a given bit position sets the corresponding bit in the
Interrupt Status register.

WO 0x0000

Bits Field Name Description Read/
Write Reset Value

31:0 TX_DATA Data to TX FIFO. WO 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for GMAC. WO 0xXXXXXXXX
www.ubicom.com 225

IP51xx Data Sheet – March 28, 2007
7.11.1.5 Port F GMAC Receive FIFO LO

7.11.1.6 Port F GMAC Receive FIFO HI

7.11.1.7 Port F GMAC Function Control 0

7.11.1.8 Port F GMAC Function Control 1

7.11.1.9 Port F GMAC Function Status 0
Function Status 0 shows bits from the Transmit Statistics Vector (TSV) as follows:

Bits Field Name Description Read/
Write Reset Value

31:0 RX_DATA Data from RX FIFO. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 Not used for GMAC. WO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:4 Reserved R/W 0xXX
3:2 CLK_SPD Selects transmit clock speed: R/W 0x0

2’b00: 125 MHz
2’b01: 25 MHz
2’b10: 2.5 MHz
2’b11: Reserved

1:0 INTERFACE_
MODE_SELECT

Physical Interface Selection: R/W 0x0
2’b00: RGMII mode
2’b01: MII mode
2’b10: RMII mode
2’b11: Reserved

Bits Field Name Description Read/
Write Reset Value

31:18 Reserved R/W 0x0000
17:16 TX_OFFSET Transmit packet offset. Indicates the byte address of the first valid

data in the TX FIFO.
R/W 0x00

15:0 TX_SIZE Transmit packet size (bytes). R/W 0x00

Bits Field Name Description Read/
Write Reset Value

31 Reserved RO 0x0
30 TX_VLAN Transmit VLAN Tagged Frame: Frame’s length/type field

contained 0x8100, which is the VLAN Protocol Identifier.
RO 0xX

29 TX_BP Backpressure Applied: Carrier-sense-method backpressure was
previously applied.

RO 0xX

28 TX_PAUSE Transmit PAUSE Control Frame: Frame transmitted was a Control
frame with a valid PAUSE opcode.

RO 0xX
226 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.11.1.10 Port F GMAC Function Status 1

7.11.1.11 Port F GMAC Function Status 2
Function Status 2 shows bits from the Receive Statistics Vector (RSV) as follows:

27 TX_CF Transmit Control Frame: Frame transmitted was a Control frame. RO 0xX
26 TX_UR Transmit Under-run: Host side failed to transfer complete frame to

PETFN.
RO 0xX

25 TX_GIANT Transmit Giant: Byte count for frame was greater than MAXIMUM
FRAME parameter.

RO 0xX

24 TX_LATE_COL Transmit Late Collision: Collision occurred beyond the collision
window (512 bit times).

RO 0xX

23 TX_MAX_COL Transmit Maximum Collisions: Packet was aborted after number
of collisions exceeded RETRANSMISSON MAXIMUM.

RO 0xX

22 TX_ED Transmit Excessive Defer: Packet was deferred in excess of 6,071
nibble-times in 100 Mbps mode, or 24,287 bit-times in 10 Mbps
mode.

RO 0xX

21 TX_PD Transmit Packet Defer: Packet was deferred for at least one
attempt, but less than an excessive defer.

RO 0xX

20 TX_DONE Transmit Done: Transmission of the packet was completed. RO 0xX
19:16 TX_COL_CNT Transmit Collision Count: Number of collisions the current packet

incurred during transmission attempts. Note: Bits 19 through 16
are the collision count on any successfully transmitted packet and
as such will not show the possible maximum count of 16
collisions.

RO 0xX

15:0 TX_BYTE_CNT Transmit Byte Count: Total bytes in frame not counting collided
bytes.

RO 0xXXXX

Bits Field Name Description Read/
Write Reset Value

31:16 GMAC_TX_FIFO_
LEVEL

Occupancy (in 32-bit words) of the transmit packet buffer. RO 0xXXXX

15:2 Reserved RO 0x0000
1 GMAC_RXFIFO_

ACTIVE
GMAC RX FIFO active RO 0x0

0 GMAC_IOPCS_
TX_CHAN_RDY

GMAC IOPCS transmit channel ready RO 0x0

Bits Field Name Description Read/
Write Reset Value

31 Reserved RO 0x0
30 RX_TRUNC Receive frame truncated. RO 0xX
29 RX_LONG Receive long event. RO 0xX
28 RX_VLAN Receive VLAN Tag Detected: Frame’s length/type field contained

0x8100 which is the VLAN Protocol Identifier.
RO 0xX

Bits Field Name Description Read/
Write Reset Value
www.ubicom.com 227

IP51xx Data Sheet – March 28, 2007
27 RX_U_OP Receive Unsupported Opcode: The current frame was
recognized as a Control Frame, but it contained an unknown
opcode. This can be qualified by verifying RSV[20] = 0, and
length = (64 - 1518) to verify that the frame was a valid
Control Frame.

RO 0xX

26 RX_PAUSE Receive PAUSE Control Frame: The current frame was
recognized as a Control Frame containing a valid PAUSE Frame
opcode and a valid address. This can be qualified by verifying
RSV[20] = 0, and length = (64 - 1518) to verify that the
frame was a valid Control Frame.

RO 0xX

25 RX_CF Receive Control Frame: The current frame was recognized as a
Control Frame for having a valid Type-Length designation. This
can be qualified by verifying RSV[20] = 0, and length = (64 -
1518) to verify that the frame was a valid Control Frame.

RO 0xX

24 RX_DN Receive Dribble Nibble: Indicates that after the end of the packet
an additional 1 to 7 bits were received. A single nibble, called the
dribble nibble, is formed but not sent to the system (10/100 Mbps
only).

RO 0xX

23 RX_OK Receive OK: Frame contained a valid CRC and did not have a
code error.

RO 0xX

22 RX_OR Receive Length Out of Range: Indicates that a frame’s length was
larger than 1518 bytes but smaller than the Host’s Maximum
Frame Length Value (Type Field).

RO 0xX

21 RX_LCE Receive Length Check Error: Indicates that the frame length field
value in the packet does not match the actual data byte length and
is not a Type Field.

RO 0xX

20 RX_CRC_ER Receive CRC Error: The packet’s CRC did not match the
internally generated CRC.

RO 0xX

19 RX_ERR Receive Code Error: One or more nibbles were signaled as errors
during the reception of the packet

RO 0xX

18 RX_FALSE_CAR Receive False Carrier: Indicates that at some time since the last
receive statistics vector, a false carrier was detected, noted and
reported with the current receive statistics vector. The false carrier
is not associated with this packet. A false carrier is activity on the
receive channel that does not result in a packet receive attempt
being made. A false carrier is detected as RX_ER = 1,
RX_DV = 0, RXD[3:0] = 0xE (RXD[7:0] = 0x0E).

RO 0xX

17 RX_DV_ER Receive RX_DV Event: Indicates that the last receive event seen
was not long enough to be a valid packet.

RO 0xX

16 RX_PKT_DRP Receive Previous Packet Dropped: Indicates that since the last
receive statistics vector a packet was dropped (i.e. IFG too small).

RO 0xX

15:0 RX_BYTE_CNT Receive Byte Count: Total number of bytes in receive frame,
not counting collided bytes.

RO 0xXXXX

Bits Field Name Description Read/
Write Reset Value
228 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.11.1.12 Port F GMAC Blocking Region Registers
The GMAC blocking region registers reside at offsets 0x00 - 0x11 in the I/O Port F blocking region (see Table 7-16).

Table 7-21 lists the registers in this region.

Details for the registers in Table 7-21 are given below, starting in Table 7-22.

Table 7-21 Organization of the Port F GMAC Blocking Region
Offset Description Reset Value
0x00 MAC Configuration #1 0x8000 0000
0x01 MAC Configuration #2 0x0000 7000
0x02 Inter-Packet Gap (IPG) / Inter-Frame Gap (IFG) 0x4060 5060
0x03 Half-Duplex 0x00A1 F037
0x04 Maximum Frame Length 0x0000 0600

0x05 - 0x06 Reserved 0x0000 0000
0x07 Test Register 0x0000 0000

0x08 - 0x0D Reserved 0x0000 0000
0x0E Interface Control 0x0000 0000
0x0F Interface Status 0x0000 0000
0x10 Station Address, Part 1 0x0000 0000
0x11 Station Address, Part 2 0x0000 0000

Table 7-22 Port F GMAC Blocking Register Definitions — MAC Configuration #1

Bits Description Read/
Write Reset Value

31 SOFT RESET: Setting this bit will put all modules within the GMAC into reset, except
the Host Interface. The Host Interface is reset via HRST.

R/W 1

30 Reserved. This bit must only be written as 0. R/W 0
29:20 Reserved R/W 0x000

19 RESET RX MAC CONTROL: Setting this bit will put the PERMC Receive MAC
Control block in reset. This block detects Control frames and contains the pause
timers.

R/W 0

18 RESET TX MAC CONTROL: Setting this bit will put the PETMC Transmit MAC
Control block in reset. This block multiplexes data and Control frame transfers. It also
responds to XOFF PAUSE Control frames.

R/W 0

17 RESET RX FUNCTION: Setting this bit will put the PERFN Receive Function block in
reset. This block performs the receive frame protocol.

R/W 0

16 RESET TX FUNCTION: Setting this bit will put the PETFN Transmit Function block in
reset. This block performs the frame transmission protocol.

R/W 0

15:9 Reserved R/W 0x00
8 LOOP BACK: Setting this bit will cause the PETFN MAC Transmit outputs to be

looped back to the MAC Receive inputs. Clearing this bit results in normal operation.
R/W 0

7:6 Reserved R/W 0x0
5 RECEIVE FLOW CONTROL ENABLE: Setting this bit will cause the PERFN Receive

MAC Control to detect and act on PAUSE Flow Control frames. Clearing this bit
causes the Receive MAC Control to ignore PAUSE Flow Control frames.

R/W 0
www.ubicom.com 229

IP51xx Data Sheet – March 28, 2007

4 TRANSMIT FLOW CONTROL ENABLE: Setting this bit will allow the PETMC
Transmit MAC Control to send PAUSE Flow Control frames when requested by the
system. Clearing this bit prevents the Transmit MAC Control from sending Flow
Control frames.

R/W 0

3 SYNCHRONIZED RECEIVE ENABLE: Receive Enable synchronized to the receive
stream.

RO 0

2 RECEIVE ENABLE: Setting this bit will allow the MAC to receive frames from the
PHY. Clearing this bit will prevent the reception of frames.

R/W 0

1 SYNCHRONIZED TRANSMIT ENABLE: Transmit Enable synchronized to the
transmit stream.

RO 0

0 TRANSMIT ENABLE: Setting this bit will allow the MAC to transmit frames from the
system. Clearing this bit will prevent the transmission of frames.

R/W 0

Table 7-23 Port F GMAC Blocking Register Definitions — MAC Configuration #2

Bits Description Read/
Write Reset Value

31:16 Reserved R/W 0x0000
15:12 PREAMBLE LENGTH: This field determines the length of the preamble field of the

packet, in bytes.
R/W 0x7

11:10 Reserved R/W 0x0
9:8 INTERFACE MODE: This field determines the type of interface to which the MAC is

connected:
R/W 0x0

2’b00: Reserved
2’b01: MII / RMII
2’b10: RGMII
2’b11: Reserved

7:6 Reserved R/W 0x0
5 HUGE FRAME ENABLE: Set this bit to allow frames longer than the MAXIMUM

FRAME LENGTH to be transmitted and received. Clear this bit to have the MAC limit
the length of frames at the MAXIMUM FRAME LENGTH value. Maximum Frame
Length is set in the separate Maximum Frame Length register.

R/W 0

4 LENGTH FIELD CHECKING: Set this bit to cause the MAC to check the frame’s
length field to ensure that it matches the actual data field length. Clear this bit if no
length field checking is desired.

R/W 0

3 Reserved R/W 0
2 PAD / CRC ENABLE: Set this bit to have the MAC pad all short frames and append a

CRC to every frame, whether or not padding was required. Clear this bit if frames
presented to the MAC have a valid length and contain a CRC.

R/W 0

1 CRC ENABLE: Set this bit to have the MAC append a CRC to all frames. Clear this bit
if frames presented to the MAC have a valid length and contain a valid CRC. If the
PAD/CRC ENABLE configuration bit or the per-packet PAD/CRC ENABLE is set, CRC
ENABLE is ignored.

R/W 0

0 FULL-DUPLEX: Setting this bit will configure the GMAC to operate in Full-Duplex
mode. Clearing this bit will configure the PE-MCXMAC to operate in Half-Duplex
mode only.

R/W 0

Table 7-22 Port F GMAC Blocking Register Definitions — MAC Configuration #1 (continued)

Bits Description Read/
Write Reset Value
230 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 7-24 Port F GMAC Blocking Register Definitions — Inter-Packet Gap (IPG) / Inter-Frame Gap (IFG)

Bits Description Read/
Write Reset Value

31 Reserved R/W 0
30:24 NON-BACK-TO-BACK INTER-PACKET GAP PART 1 (IPGR1): This programmable

field represents the optional carrierSense window referenced in IEEE 802.3/4.2.3.2.1
‘Carrier Deference’. If a carrier is detected during the timing of IPGR1, the MAC will
defer to the carrier. If, however, the carrier becomes active after IPGR1, the MAC will
continue timing IPGR2 and transmit, knowingly causing a collision. This ensures fair
access to the medium. The permitted range of values is 0x0 to IPGR2. Default is 0x40
(64d) which follows the two-thirds/one-thirds guideline.

R/W 0x40

23 Reserved R/W 0
22:16 NON-BACK-TO-BACK INTER-PACKET GAP PART 2 (IPGR2): This programmable

field represents the Non-Back-to-Back Inter-Packet-Gap in bit times. Default is 0x60
(96d), which represents the minimum IPG of 96 bits.

R/W 0x60

15:8 MINIMUM IFG ENFORCEMENT: This programmable field represents the minimum
size of IFG to enforce between frames (expressed in bit times). A frame whose IFG is
less than that programmed is dropped. The default setting of 0x50 (80d) represents
half of the nominal minimum IFG which is 160 bits.

R/W 0x50

7 Reserved R/W 0
6:0 BACK-TO-BACK INTER-PACKET GAP: This programmable field represents the IPG

between Back-to-Back packets (expressed in bit times). This is the IPG parameter
used exclusively in Full-Duplex mode when two transmit packets are sent back-to-
back. Set this field to the desired number of bits. The default setting of 0x60 (96d)
represents the minimum IPG of 96 bits.

R/W 0x60

Table 7-25 Port F GMAC Blocking Register Definitions — Half-Duplex

Bits Description Read/
Write Reset Value

31:24 Reserved R/W 0x00
23:20 ALTERNATE BINARY EXPONENTIAL BACKOFF TRUNCATION: This field is used

when ALTERNATE BINARY EXPONENTIAL BACKOFF ENABLE is set. The value
programmed is substituted for the Ethernet standard value of ten.

R/W 0xA

19 ALTERNATE BINARY EXPONENTIAL BACKOFF ENABLE: Setting this bit will
configure the Tx MAC to use the ALTERNATE BINARY EXPONENTIAL BACKOFF
TRUNCATION setting instead of the 802.3 standard tenth collision. The Standard
specifies that any collision after the tenth uses 210 – 1 as the maximum backoff time.
Clearing this bit will cause the Tx MAC to follow the standard binary exponential
backoff rule.

R/W 0

18 BACKPRESSURE NO BACKOFF: Setting this bit will configure the Tx MAC to
immediately re-transmit following a collision during backpressure operation. Clearing
this bit will cause the Tx MAC to follow the binary exponential backoff rule.

R/W 0

17 NO BACKOFF: Setting this bit will configure the Tx MAC to immediately re-transmit
following a collision. Clearing this bit will cause the Tx MAC to follow the binary
exponential backoff rule.

R/W 0
www.ubicom.com 231

IP51xx Data Sheet – March 28, 2007
16 EXCESSIVE DEFER: Setting this bit will configure the Tx MAC to allow the
transmission of a packet that has been excessively deferred. Clearing this bit will
cause the Tx MAC to abort the transmission of a packet that has been excessively
deferred.

R/W 1

15:12 RETRANSMISSION MAXIMUM: This is a programmable field specifying the number
of retransmission attempts following a collision before aborting the packet due to
excessive collisions. The Standard specifies the maximum number of attempts to be
0xF (15d).

R/W 0xF

11:10 Reserved R/W 0x0
9:0 COLLISION WINDOW: This programmable field represents the slot time or collision

window during which collisions might occur in a properly configured network. Since
the collision window starts at the beginning of transmission, the preamble and SFD
are included. The default of 0x037 (55d) corresponds to the count of frame bytes at
the end of the window. If the value is larger than 0x03F, the TPST signal will no longer
work correctly.

R/W 0x037

Table 7-26 Port F GMAC Blocking Register Definitions — Maximum Frame Length

Bits Description Read/
Write Reset Value

31:16 Reserved R/W 0x0000
15:0 MAXIMUM FRAME LENGTH: This programmable field sets the maximum frame size

in both the transmit and receive directions. It resets to 0x0600 (1536d).
R/W 0x0600

Table 7-27 Port F GMAC Blocking Register Definitions — Test Register

Bits Description Read/
Write Reset Value

31:4 Reserved R/W 0x0000000
3 MAXIMUM BACKOFF: Setting this bit will cause the MAC to backoff for the maximum

possible length of time. This test bit is used to predict backoff times in Half-Duplex
mode.

R/W 0

2 REGISTERED TRANSMIT FLOW ENABLE: Registered Transmit Half-Duplex Flow
Enable.

R/W 0

1 TEST PAUSE: Setting this bit allows the MAC to be paused via the host interface for
testing purposes.

R/W 0

0 SHORTCUT SLOT TIME: This bit allows the slot time counter to expire regardless of
the current count. This bit is for testing purposes only.

R/W 0

Table 7-25 Port F GMAC Blocking Register Definitions — Half-Duplex (continued)

Bits Description Read/
Write Reset Value
232 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
In the Interface Control Register, the range of bits that are active depends on which optional interfaces are connected.

Table 7-28 Port F GMAC Blocking Register Definitions — Interface Control

Bits Description Read/
Write Reset Value

31 RESET INTERFACE MODULE: Setting this bit resets the Interface module. Clearing
this bit allows for normal operation. This bit can be used in place of bits 23, 15, and 7
when just 1 Interface module is connected.

R/W 0

30:28 Reserved R/W 0x0
27 TBIMODE: Setting this bit configures the A-RGMII module to expect TBI signals at the

GMII interface as described in A-RGMII documentation. This bit should not be
asserted unless this mode is being used.

R/W 0

26 GHDMODE: Setting this bit configures the A-RGMII module to expect half-duplex
GMII at the GMII interface. It also enables the use of CRS and COL signals as
described in A-RGMII documentation. When the M-MCXWOL module is integrated,
this bit performs the function of WOLDTCTDCLR. When WOLDTCTDCLR is
asserted, WOLDTCTD is held low. When WOLDTCTDCLR is cleared, WOLDTDCTD
may become asserted appropriately.

R/W 0

25 LHDMODE: Setting this bit configures the A-RGMII module to expect 10 or 100 half-
duplex MII at the GMII interface and will enable the use of CRS and COL signals as
described in A-RGMII documentation. This bit should not be asserted unless this
mode is being used.

R/W 0

24 PHY MODE: Setting this bit configures the PESMII Serial MII module to be in PHY
Mode. Link characteristics are taken directly from the Rx segments supplied by the
PHY. Clearing this bit configures the PESMII to be in MAC-to-MAC mode. In this
configuration, the Serial MII module reverts to the pre-defined settings of 100 Mbps,
Full-Duplex.

R/W 0

23 RESET PERMII: Setting this bit resets the PERMII module. Clearing this bit allows for
normal operation

R/W 0

22:17 Reserved R/W 0x00
16 SPEED: This bit configures the PERMII Reduced MII module with the current

operating speed. When set, 100 Mbps mode is selected. When cleared, 10 Mbps
mode is selected.

R/W 0

15 RESET PE100X: This bit resets the PE100X module, which contains the 4B / 5B
symbol encipher / decipher logic.

R/W 0

14:11 Reserved R/W 0x0
10 FORCE QUIET: When enabled, transmit data is quieted which allows the contents of

the cipher to be output. When cleared, normal operation is enabled. Affects PE100X
module only.

R/W 0

9 NO CIPHER: When enabled, the raw transmit 5B symbols are transmitted without
ciphering. When disabled, normal ciphering occurs. Affects PE100X module only.

R/W 0

8 DISABLE LINK FAIL: When enabled, the 330 ms Link Fail timer is disabled, allowing
shorter simulations. Removes the 330 ms link-up time before reception of streams is
allowed. When cleared, normal operation occurs. Affects PE100X module only.

R/W 0

7 RESET GPSI: This bit resets the PE10T module which converts MII nibble streams to
the serial bit stream of ENDEC PHYs. Affects PE10T module only.

R/W 0

6:1 Reserved R/W 0x00
0 ENABLE JABBER PROTECTION: This bit enables the Jabber Protection logic within

the PE10T in ENDEC mode. Jabber is the condition where a transmitter is stuck on for
longer than 50 ms, preventing other stations from transmitting. Affects PE10T module
only.

R/W 0
www.ubicom.com 233

IP51xx Data Sheet – March 28, 2007
In the Interface Status Register, the range of bits that are active depends on which optional interfaces are connected.

Table 7-29 Port F GMAC Blocking Register Definitions — Interface Status

Bits Description Read/
Write Reset Value

31:11 Reserved RO 0x000000
10 WOLDTCTD: This bit is only used when the optional M-MCXWOL module is

integrated. It is set when the MAC detects a Magic Packet and stays high until it is
cleared by the assertion of WOLDTCTDCLR. Its reset value is low.

RO/LH 0

9 EXCESS DEFER: This bit sets when the MAC excessively defers a transmission. It
clears when read. This bit latches high.

RO/LH 0

8 CLASH: When read as a 1, the Serial MII module is in MAC-to-MAC mode with the
partner in 10 Mbps and / or Half-Duplex mode indicative of a configuration error. When
read as a 0, the Serial MII module is either in PHY mode or in a properly configured
MAC-to-MAC mode.

RO 0

7 JABBER: When read as a 1, the Serial MII PHY has detected a jabber condition on
the link. When read as a 0, the Serial MII PHY has not detected a jabber condition.

RO 0

6 LINK OK: When read as a 1, the Serial MII PHY has detected a valid link. When read
as a 0, the Serial MII PHY has not detected a valid link.

RO 0

5 FULL DUPLEX: When read as a 1, the Serial MII PHY is operating in Full-Duplex
mode. When read as a 0, the Serial MII PHY is operating in Half-Duplex mode.

RO 0

4 SPEED: When read as a 1, the Serial MII PHY is operating at 100 Mbps mode. When
read as a 0, the Serial MII PHY is operating at 10 Mbps.

RO 0

3 LINK FAIL: When read as a 1, the MII Management module has read the PHY link fail
register to be 1. When read as a 0, the MII Management module has read the PHY
link fail register to be 0. Note that for asynchronous host accesses, this bit must be
read at least once every scan read cycle of the PHY.

RO 0

2 LOSS OF CARRIER: When read as a 1, the PE10T module has detected a Loss of
Carrier. When read as a 0, the PE10T module has not detected a Loss of Carrier. This
bit latches high.

RO/LH 0

1 SQE ERROR: When read as a 1, the PE10T module has detected an SQE Error.
When read as a 0, the PE10T module has not detected an SQE Error. This bit latches
high.

RO/LH 0

0 JABBER: When read as a 1, the PE10T module has detected a Jabber condition.
When read as a 0, the PE10T module has not detected a Jabber condition. This bit
latches high.

RO/LH 0
234 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 7-30 Port F GMAC Blocking Register Definitions — Station Address, Part 1

Bits Description Read/
Write Reset Value

31:24 STATION ADDRESS, 1st octet: This field holds the first octet of the station
address.

R/W 0x00

24:16 STATION ADDRESS, 2nd octet: This field holds the second octet of the station R/W 0x00
15:8 STATION ADDRESS, 3rd octet: This field holds the third octet of the station address. R/W 0x00
7:0 STATION ADDRESS, 4th octet: This field holds the fourth octet of the station address. R/W 0x00

Table 7-31 Port F GMAC Blocking Register Definitions — Station Address, Part 2

Bits Description Read/
Write Reset Value

31:24 STATION ADDRESS, 5th octet: This field holds the fifth octet of the station
address.

R/W 0x00

23:16 STATION ADDRESS, 6th octet: This field holds the sixth octet of the station address. R/W 0x00
15:0 Reserved R/W 0x00
www.ubicom.com 235

IP51xx Data Sheet – March 28, 2007
7.12 Port G Registers

7.12.1 Port G Function 1 (DDR SDRAM)
This section describes the function-specific attributes of the registers used when Port G Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

The DDR SDRAM interface uses both non-blocking registers and blocking registers. The non-blocking registers are
listed first.

7.12.1.1 Port G DDR SDRAM Function Register

7.12.1.2 Port G DDR SDRAM Interrupt Status

7.12.1.3 Port G DDR SDRAM Interrupt Set

7.12.1.4 Port G DDR SDRAM Transmit FIFO LO

7.12.1.5 Port G DDR SDRAM Transmit FIFO HI

Bits Field Name Description Read/
Write Reset Value

31:13 Reserved RO 0x00000
12:8 BR_TNUM Blocking region thread number. The number of the thread that is

allowed to access the blocking region for this port.
R/W 0x00

7:5 Not applicable to the DDR SDRAM function. RO 0x0
4 FN_RESET DDR SDRAM Function Reset R/W 0x0
3 RX_FIFO_SEL Not used by DDR SDRAM. R/W 0x0

2:0 FN_SEL ‘3h1 selects DDR SDRAM. R/W 0xX

Bits Field Name Description Read/
Write Reset Value

31:1 Reserved RO 0x00000000
0 Controller Interrupt DDR Controller level sensitive interrupt. RO 0

Bits Field Name Description Read/
Write Reset Value

31:1 Reserved WO 0x00000000
0 Interrupt Set Writing a 1 to this bit position sets the corresponding bit in the

Interrupt Status register.
WO 0x0

Bits Field Name Description Read/
Write Reset Value

31:0 Not used by DDR SDRAM. WO 0x00000000

Bits Field Name Description Read/
Write Reset Value

31:0 Not used by DDR SDRAM. WO 0x00000000
236 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.12.1.6 Port G DDR SDRAM Receive FIFO LO

7.12.1.7 Port G DDR SDRAM Receive FIFO HI

7.12.1.8 Port G DDR SDRAM Function Control 0

7.12.1.9 Port G DDR SDRAM Blocking Region Registers
Table 7-32 shows the address map for these registers, and lists the parameters contained within each byte of each
register. For each parameter, there is a high-level definition, access restrictions, reset value, and the range of possible
values. Table 7-33 gives detailed definitions for the parameters listed in Table 7-32.

Bits Field Name Description Read/
Write Reset Value

31:0 Not used by DDR SDRAM. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:0 Not used by DDR SDRAM. RO 0xXXXXXXXX

Bits Field Name Description Read/
Write Reset Value

31:4 Reserved R/W 0x0
3:0 RX_FIFO_

WATERMARK
Read Data FIFO Watermark. R/W 0x0

Table 7-32 Port G DDR SDRAM Blocking Register Definitions

Offset Register
Name Bits Parameter Name Description Read/

Write Reset Value

0x00 DDR_
CTL_00

31:27 Reserved WO 0x00
26:24 INT_ACK Clear mask of the INT_STATUS parameter. WO 0x0
23:20 Reserved RO 0x0
19:16 INT_STATUS Status of interrupt features in the controller. RO 0x0
15:8 DLL_

INCREMENT
Number of elements to add to
DLL_START_POINT when searching for lock.

R/W 0x00

7:0 DLL_
START_POINT

Initial delay count when searching for lock in
master DLL.

R/W 0x00
www.ubicom.com 237

IP51xx Data Sheet – March 28, 2007
0x01 DDR_
CTL_01

31:25 Reserved R/W 0x00
24 START Initiate command processing in the controller. R/W 0x0

23:17 Reserved RO 0x00
16 OUT_OF_

RANGE_TYPE
Type of command that caused an Out-of-
Range interrupt.

RO 0x0

15:13 Reserved RO 0x0
12:8 OUT_OF_RANGE_

LENGTH
Length of command that caused an Out-of-
Range interrupt.

RO 0x00

7:4 Reserved R/W 0x0
3:0 INT_MASK Mask for controller_int signals from the

INT_STATUS parameter.
R/W 0x0

0x02 DDR_
CTL_02

31:28 Reserved R/W 0x0
27:24 INITAREF Number of auto-refresh commands to execute

during DRAM initialization.
R/W 0x0

23:17 Reserved RO 0x
16 MAX_CS_REG Maximum number of chip selects available. RO 0x1

15:12 Reserved RO 0x0
11:8 MAX_COL_REG Maximum width of column address in DRAMs. RO 0xC
7:4 Reserved RO 0x0
3:0 MAX_ROW_REG Maximum width of memory address bus. RO 0xE

0x03 DDR_
CTL_03

31:19 Reserved R/W 0x0000
18:16 BSTLEN Encoded burst length sent to DRAMs during

initialization.
R/W 0x0

15:11 Reserved R/W 0x00
10:8 CASLAT Encoded CAS latency sent to DRAMs during

initialization.
R/W 0x0

7:4 Reserved R/W 0x00
3:0 CASLAT_LIN Sets latency from read command send to data

receive from / to controller.
R/W 0x0

0x04 DDR_
CTL_04

31:19 Reserved R/W 0x0000
18:16 TRRD DRAM TRRD parameter in cycles. R/W 0x0
15:13 Reserved R/W 0x0
12:8 TFAW DRAM TFAW parameter in cycles. R/W 0x00
7:3 Reserved R/W 0x00
2:0 TRTP DRAM TRTP parameter in cycles. R/W 0x0

0x05 DDR_
CTL_05

31:27 Reserved R/W 0x00
26:24 TEMRS DRAM TEMRS parameter in cycles. R/W 0x0
23:20 Reserved R/W 0x0
19:16 TRP DRAM TRP parameter in cycles. R/W 0x0
15:8 TRAS_MIN DRAM TRAS_MIN parameter in cycles. R/W 0x00
7:5 Reserved R/W 0x0
4:0 TRC DRAM TRC parameter in cycles. R/W 0x00

Table 7-32 Port G DDR SDRAM Blocking Register Definitions (continued)

Offset Register
Name Bits Parameter Name Description Read/

Write Reset Value
238 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x06 DDR_
CTL_06

31:27 Reserved R/W 0x00
26:24 TWTR DRAM TWTR parameter in cycles. R/W 0x0
23:16 TDLL DRAM TDLL parameter in cycles. R/W 0x00
15:14 Reserved R/W 0x0
13:8 TRFC DRAM TRFC parameter in cycles. R/W 0x00
7:5 Reserved R/W 0x0
4:0 TMRD DRAM TMRD parameter in cycles. R/W 0x00

0x07 DDR_
CTL_07

31:25 Reserved R/W 0x00
24 NO_CMD_INIT Disable DRAM commands until TDLL has

expired during initialization.
R/W 0x0

23:17 Reserved R/W 0x00
16 EIGHT_BANK_

MODE
Number of banks on the DRAM(s). R/W 0x

15:9 Reserved WO 0x00
8 AREFRESH Initiate auto-refresh when specified by

AUTO_REFRESH_MODE.
WO 0x0

7:1 Reserved R/W 0x00
0 WRITEINTERP Allow controller to interrupt write bursts to the

DRAMs with a read command.
R/W 0x0

0x08 DDR_
CTL_08

31:27 Reserved R/W 0x00
26:24 WRLAT DRAM WRLAT parameter in cycles. R/W 0x0
23:16 TCPD DRAM TCPD parameter in cycles. R/W 0x00
15:1 Reserved R/W 0x0000

0 DDRII_SDRAM_
MODE

DDRI or DDRII mode. R/W 0x0

0x09 DDR_
CTL_09

31:25 Reserved R/W 0x00
24 AP Enable auto pre-charge mode of controller. R/W 0x0

23:2 Reserved R/W 0x0
1:0 RTT_0 On-Die termination resistance setting for chip

select 0.
R/W 0x0

0x0A DDR_
CTL_10

31:25 Reserved R/W 0x00
24 INTRPTAPBURST Allow the controller to interrupt an auto pre-

charge command with another command.
R/W 0x0

23:17 Reserved R/W 0x00
16 INTRPTWRITEA Allow the controller to interrupt a combined

write command with auto pre-charge with
another write command.

R/W 0x0

15:9 Reserved R/W 0x00
8 INTRPTREADA Allow the controller to interrupt a combined

read with auto pre-charge command with
another read command.

R/W 0x0

7:1 Reserved R/W 0x00
0 CONCURRENTAP Allow controller to issue commands to other

banks while a bank is in auto pre-charge.
R/W 0x0

Table 7-32 Port G DDR SDRAM Blocking Register Definitions (continued)

Offset Register
Name Bits Parameter Name Description Read/

Write Reset Value
www.ubicom.com 239

IP51xx Data Sheet – March 28, 2007
0x0B DDR_
CTL_11

31:25 Reserved R/W 0x00
24 DLL_BYPASS_

MODE
Enable the DLL bypass feature of the
controller.

R/W 0x0

23:17 Reserved R/W 0x00
16 REDUC Enable the half datapath feature of the

controller.
R/W 0x0

15:8 TRCD_INT DRAM TRCD parameter in cycles. R/W 0x00
7:1 Reserved R/W 0x00
0 TRAS_LOCKOUT Allow the controller to execute auto pre-charge

commands before TRAS_MIN expires.
R/W 0x0

0x0C DDR_
CTL_12

31:24 DLL_LOCK Number of delay elements in master DLL
lock.

RO 0x00

23:20 Reserved R/W 0x0
19:16 APREBIT Location of the auto pre-charge bit in the

DRAM address.
R/W 0x0

15:11 Reserved R/W 0x00
10:8 COLUMN_SIZE Difference between number of column pins

available and number being used.
R/W 0x0

7:3 Reserved R/W 0x00
2:0 ADDR_PINS Difference between number of addr pins

available and number being used.
R/W 0x0

0x0D DDR_
CTL_13

31:23 Reserved R/W 0x000
22:16 DQS_OUT_SHIFT Fraction of a cycle to delay the write dqs signal

to the DRAMs during writes.
R/W 0x00

15 Reserved R/W 0x0
14:8 DLL_DQS_

DELAY_1
Fraction of a cycle to delay the dqs signal from
the DRAMs for dll_rd_dqs_slice 1 during reads.

R/W 0x00

7 Reserved R/W 0x0
6:0 DLL_DQS_

DELAY_0
Fraction of a cycle to delay the dqs signal from
the DRAMs for dll_rd_dqs_slice 0 during reads.

R/W 0x00

0x0E DDR_
CTL_14

31:30 Reserved R/W 0x0
29:16 TREF DRAM TREF parameter in cycles. R/W 0x0000
15:0 VERSION Controller version number. RO 0x2040

0x0F DDR_
CTL_15

31:16 TINIT DRAM TINIT parameter in cycles. R/W 0x0000
15:0 TRAS_MAX DRAM TRAS_MAX parameter in cycles. R/W 0x0000

0x10 DDR_
CTL_16

31:30 Reserved R/W 0x0
29:16 EMRS2_DATA EMRS2 Data written during DDRII initialization. R/W 0x0000
15:14 Reserved R/W 0x0
13:0 EMRS_DATA Extended mode register data written during

initialization or when WRITE_MODEREG set.
R/W 0x0000

0x11 DDR_
CTL_17

31:14 Reserved R/W 0x00000
13:0 EMRS3_DATA EMRS3 Data written during DDRII initialization. R/W 0x0000

Table 7-32 Port G DDR SDRAM Blocking Register Definitions (continued)

Offset Register
Name Bits Parameter Name Description Read/

Write Reset Value
240 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x12 DDR_
CTL_18

31:30 Reserved RO 0x0
29:0 OUT_OF_RANGE_

ADDR[29:0]
Address of command that caused an Out-of-
Range interrupt.

RO 0x00000000

0x13 DDR_
CTL_19

31:24 WR_DQS_SHIFT_
BYPASS

Fraction of a cycle to delay the clk_wr
signal in the controller when DLL is being
bypassed.

R/W 0x00

23 Reserved R/W 0x0
22:16 WR_DQS_SHIFT Fraction of a cycle to delay the clk_wr signal in

the controller.
R/W 0x00

15:9 Reserved R/W 0x00
8 AUTO_REFRESH_

MODE
Sets whether auto-refresh will be at next burst
or the next command boundary.

R/W 0x0

7:4 Reserved R/W 0x0
3:0 CASLAT_LIN_

GATE
Adjusts data capture gate open by half cycles. R/W 0x0

0x14 DDR_
CTL_20

31:24 DLL_DQS_DELAY_
BYPASS_1

Fraction of a cycle to delay the dqs signal
from the DRAMs for dll_rd_dqs_slice 1
during reads when DLL is being bypassed.

R/W 0x00

23:16 DLL_DQS_DELAY_
BYPASS_0

Fraction of a cycle to delay the dqs signal from
the DRAMs for dll_rd_dqs_slice 0 during reads
when DLL is being bypassed.

R/W 0x00

15:12 Reserved R/W 0x0
11:8 TDAL DRAM TDAL parameter in cycles. R/W 0x0
7:3 Reserved R/W 0x00
2:0 TWR_INT DRAM TWR parameter in cycles. R/W 0x0

0x15 DDR_
CTL_21

31:10 Reserved R/W 0x000000
9:8 RTT_PAD_

TERMINATION
Set termination resistance in controller pads. R/W 0x0

7:0 DQS_OUT_SHIFT_
BYPASS

Fraction of a cycle to delay the write dqs signal
to the DRAMs during writes when DLL is being
bypassed.

R/W 0x00

Table 7-32 Port G DDR SDRAM Blocking Register Definitions (continued)

Offset Register
Name Bits Parameter Name Description Read/

Write Reset Value
www.ubicom.com 241

IP51xx Data Sheet – March 28, 2007
Table 7-33 Detailed Descriptions of the Parameters in Table 7-32
Parameter Description

ADDR_PINS [2:0] Defines the difference between the maximum number of address pins
configured (14) and the actual number of pins being used. The user address
is automatically shifted so that the user address space is mapped
contiguously into the memory map based on the value of this parameter.

AP [0] Enables auto pre-charge mode for DRAM devices.
• 0 = Auto pre-charge mode disabled. Memory banks will stay open until another
request requires this bank, the maximum open time (tras_max) has elapsed, or a
refresh command closes all the banks.
• 1 = Auto pre-charge mode enabled. All read and write transactions must be
terminated by an auto pre-charge command. If a transaction consists of multiple read
or write bursts, only the last command is issued with an auto pre-charge.

APREBIT [3:0] Defines the location of the auto pre-charge bit in the DRAM address in decimal
encoding.

AREFRESH [0] Initiates an automatic refresh to the DRAM devices based on the setting of the
auto_refresh_mode parameter. If there are any open banks when this parameter is
set, the DDR SDRAM controller will automatically close these banks before issuing
the auto-refresh command. This parameter will always read back 0.
• 0 = No action.
• 1 = Issue refresh to the DRAM devices.

AUTO_REFRESH_MODE [0] Sets the mode for when the automatic refresh will occur. If auto_refresh_mode is set
and a refresh is required to memory, the controller will delay this refresh until the end
of the current transaction (if the transaction is fully contained inside a single page), or
until the current transaction hits the end of the current page.
• 0 = Issue refresh on the next DRAM burst boundary, even if the current command is
not complete.
• 1 = Issue refresh on the next command boundary.

BSTLEN [2:0] Defines the burst length encoding that will be programmed into the DRAM devices at
initialization.
• 001 = 2 words.
• 010 = 4 words.
• 011 = 8 words.
• All other settings are reserved.

CASLAT [2:0] Sets the CAS (Column Address Strobe) latency encoding that the memory uses. The
binary value programmed into this parameter depends on the memory device, since
the same caslat value may have different meanings to different memories. This will
be programmed into the DRAM devices at initialization. The CAS encoding will be
specified in the DRAM spec sheet, and should correspond to the caslat_lin
parameter. Refer to the regconfig files in the release for actual settings for each
particular device.
242 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
CASLAT_LIN [3:0] Sets the CAS latency linear value in 1/2 cycle increments. This sets an internal
adjustment for the delay from when the read command is sent from the controller to
when data will be received back. The window of time in which the data is captured is
a fixed length. The caslat_lin parameter adjusts the start of this data capture window.
Note: Not all linear values will be supported for the memory devices being used.
Refer to the specification for the memory devices being used.
• 0000 - 0010 = Reserved.
• 0011 = 1.5 cycles.
• 0100 = 2 cycles.
• 0101 = 2.5 cycles.
• 0110 = 3 cycles.
• 0111 = 3.5 cycles.
• 1000 = 4 cycles.
• 1001 - 1111 = Reserved.

CASLAT_LIN_GATE [3:0] Adjusts the data capture gate open time by 1/2 cycle increments. This parameter is
programmed differently from caslat_lin when there are fixed offsets in the flight path
between the memories and the controller for clock gating. When caslat_lin_gate is a
larger value than caslat_lin, the data capture window will become shorter. A
caslat_lin_gate value smaller than caslat_lin may have no effect on the data capture
window, depending on the fixed offsets in the ASIC and the board.
• 0000 - 0010 = Reserved.
• 0011 = 1.5 cycles.
• 0100 = 2 cycles.
• 0101 = 2.5 cycles.
• 0110 = 3 cycles.
• 0111 = 3.5 cycles.
• 1000 = 4 cycles.
• 1001 - 1111 = Reserved.

COLUMN_SIZE [2:0] Shows the difference between the maximum column width available (12) and the
actual number of column pins being used. The user address is automatically shifted
so that the user address space is mapped contiguously into the memory map based
on the value of this parameter.

CONCURRENTAP [0] Enables concurrent auto pre-charge. Some DRAM devices do not allow one bank to
be auto pre-charged while another bank is reading or writing. The JEDEC standard
allows concurrent auto pre-charge. Set this parameter for the DRAM device being
used.
• 0 = Concurrent auto pre-charge disabled.
• 1 = Concurrent auto pre-charge enabled.

DDRII_SDRAM_MODE [0] Enables DDRII mode.
• 0 = DDRI mode.
• 1 = DDRII mode.

DLL_BYPASS_MODE [0] Defines the behavior of the DLL bypass logic. When set to 1, the values programmed
into the parameters dll_dqs_delay, dqs_out_shift, and wr_dqs_shift become absolute
values rather than fractional values of delays in the delay chains. In this mode, the
DCC locking mechanism is bypassed. If the total delay time programmed into the
delay parameters exceeds the number of delay elements in the delay chain, then the
delay will be set to the maximum number of delay elements in the delay chain.
• 0 = Normal operational mode.
• 1 = Bypass the DLL master delay line.

Table 7-33 Detailed Descriptions of the Parameters in Table 7-32 (continued)
Parameter Description
www.ubicom.com 243

IP51xx Data Sheet – March 28, 2007
DLL_DQS_DELAY_X [6:0] Sets the delay for the read_dqs signal from the DDR SDRAM devices for
dll_rd_dqs_slice X. This delay is used to center the edges of the read_dqs signal so
that the read data will be captured in the middle of the valid window in the I/O logic.
Delay is added in increments of 1/128 of the system clock. The same delay will be
added to the read_dqs signal for each byte of the read data.

DLL_DQS_DELAY_BYPASS_
X [7:0]

Sets the delay for the read_dqs signal from the DDR SDRAM devices for
dll_rd_dqs_slice X for reads when the DLL is being bypassed. This delay is used
center the edges of the read_dqs signal so that the read data will be captured in the
middle of the valid window in the I/O logic. Delay is added in increments of 1/128 of
the system clock. The same delay will be added to the read_dqs signal for each byte
of the read data.

DLL_INCREMENT [7:0] Defines the number of delay elements by which to recursively increment the
dll_start_point parameter when searching for lock.

DLL_LOCK [7:0] Defines the actual number of delay elements used to capture one full clock cycle.
This parameter is automatically updated every time a refresh operation is performed.
This parameter is read-only.

DLL_START_POINT [7:0] Sets the number of delay elements to place in the master delay line to start searching
for lock in master DLL.

DQS_OUT_SHIFT [6:0] Controls the amount of delay in fractions of a cycle introduced into the clk_dqs_out
signal for the dll_wr_dqs_slice to ensure correct data capture in the I/ O logic.

DQS_OUT_SHIFT_
BYPASS [7:0]

Controls the amount of delay in fractions of a cycle for the clk_dqs_out signal for the
dll_wr_dqs_slice, when the DLL is being bypassed. This delay is introduced to
ensure correct data capture in the I/O logic.

EIGHT_BANK_MODE [0] Indicates whether the memory devices have four banks or eight banks.
• 0 = Memory devices have 4 banks.
• 1 = Memory devices have 8 banks.

EMRS_DATA [13:0] Holds the Extended Mode Register data. The contents of this parameter will be
programmed into the DRAM at initialization. Consult the DRAM specification for the
correct settings for this parameter.

EMRS2_DATA [13:0] Holds the EMRS2 data written during DDRII initialization.
EMRS3_DATA [13:0] Holds the EMRS3 data written during DDRII initialization.
INITAREF [3:0] Defines the number of auto-refresh commands needed by the DRAM devices to

satisfy the initialization sequence.
INT_ACK [2:0] Controls the clearing of the int_status parameter. If any of the int_ack bits are set to a

1, the corresponding bit in the int_status parameter will be set to 0. Any int_ack bits
written with a 0 will not alter the corresponding bit in the int_status parameter. This
parameter will always read back as 0.

INT_MASK [3:0] Active-high mask bits that control the value of the controller_int signal on the ASIC
interface. This mask is inverted and then logically ANDed with the outputs of the
int_status parameter.

Table 7-33 Detailed Descriptions of the Parameters in Table 7-32 (continued)
Parameter Description
244 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
INT_STATUS [3:0] Shows the status of all possible interrupts generated by the controller. The MSB is
the result of a logical OR of all the lower bits. This parameter is read-only.
Note: Backwards compatibility is available for register parameters across
configurations. However, even with this compatibility, the individual bits, their
meaning and the size of the int_status parameter may change.
The int_status bits correspond to these interrupts:
• 0 = A single access outside the defined PHYSICAL memory space detected.
• 1 = Multiple accesses outside the defined PHYSICAL memory space detected.
• 2 = DRAM initialization complete.
• 3 = Logical OR of all lower bits.

INTRPTAPBURST [0] Enables interrupting an auto pre-charge command with another command for a
different bank. If enabled, the current operation will be interrupted. However, the bank
will be pre-charged as if the current operation were allowed to continue.
• 0 = Disable interrupting an auto pre-charge operation on a different bank.
• 1 = Enable interrupting an auto pre-charge operation on a different bank.

INTRPTREADA [0] Enables interrupting of a combined read with auto pre-charge command with another
read command to the same bank before the first read command is completed.
• 0 = Disable interrupting the combined read with auto pre-charge command with
another read command to the same bank.
• 1 = Enable interrupting the combined read with auto pre-charge command with
another read command to the same bank.

INTRPTWRITEA [0] Enables interrupting of a combined write with auto pre-charge command with another
read or write command to the same bank before the first write command is
completed.
• 0 = Disable interrupting a combined write with auto pre-charge command with
another read or write command to the same bank.
• 1 = Enable interrupting a combined write with auto pre-charge command with
another read or write command to the same bank.

MAX_COL_REG [3:0] Defines the maximum width of column address in the DRAM devices. This value can
be used to set the column_size parameter. This parameter is read-only.
column_size = max_col_reg - <number of column bits in memory device>.

MAX_CS_REG [0] Defines the maximum number of chip selects for the controller.This parameter is
read-only.

MAX_ROW_REG [3:0] Defines the maximum width of the memory address bus (number of row bits) for the
controller. This value can be used to set the addr_pins parameter. This parameter is
read-only.
addr_pins = max_row_reg - <number of row bits in memory device>.

NO_CMD_INIT [0] Disables DRAM commands until DLL initialization is complete and tdll has expired.
• 0 = Issue only REF and PRE commands during DLL initialization of the DRAM
devices.
• 1 = Do not issue any type of command during DLL initialization of the DRAM
devices.

OUT_OF_RANGE_
ADDR [29:0]

Holds the address of the command that caused an out-of- range interrupt request to
the memory devices. This parameter is read-only.

OUT_OF_RANGE_
LENGTH [4:0]

Holds the length of the command that caused an out-of-range interrupt request to the
memory devices. This parameter is read-only.

OUT_OF_RANGE_TYPE [0] Holds the type of command that caused an out-of-range interrupt request to the
memory devices. This parameter is read-only.

Table 7-33 Detailed Descriptions of the Parameters in Table 7-32 (continued)
Parameter Description
www.ubicom.com 245

IP51xx Data Sheet – March 28, 2007
REDUC [0] For controllers that can operate with a memory datapath width of half the standard
with, this parameter sets the width. The entire user datapath is used regardless of
this setting.
• 0 = Standard operation using full memory bus.
• 1 = Memory datapath width is half of the maximum size.

RTT_X [1:0] Defines the On-Die termination resistance for a DRAM for chip select X.
• 00 = Termination Disabled.
• 01 = 75 Ohm.
• 10 = 150 Ohm.
• 11 = Reserved.

RTT_PAD_
TERMINATION [1:0]

Sets the termination resistance in the controller pads. The controller decodes this
information and sets the param_75_ohm_sel output signal accordingly. The
param_75_ohm_sel signal will be asserted if this parameter is set to ‘b01 and
deasserted for all other cases. This parameter also disables the output signal tsel, an
active-high, dynamic signal which is used in the pads to enable termination on reads.
If this parameter is set to ‘b00, the tsel signal will be held low.
• 00 = Termination Disabled.
• 01 = 75 Ohm.
• 10 = 150 Ohm.
• 11 = Reserved.

START [0] With this parameter set to 0, the controller will not issue any commands to the DRAM
devices or respond to any signal activity except for reading and writing parameters.
Once this parameter is set to 1, the controller will respond to inputs from the ASIC.
The user should not set the start bit until the controller is fully initialized as indicated
by the controller_int bit of the int_status parameter being set. Once operational, the
start bit should not be cleared during operation.
• 0 = Controller is not in active mode.
• 1 = Initiate active mode for the controller.

TCPD [7:0] Defines the clock enable to pre-charge delay time for the DRAM devices, in cycles.
TDAL [3:0] Defines the auto pre-charge write recovery time when auto pre-charge is enabled (ap

is set), in cycles. This is defined internally as tRP (pre-charge time) + Auto precharge
write recovery time. Note that not all memories use this parameter. If tDAL is defined
in the memory specification, then program this parameter to the specified value. If the
memory does not specify a tDAL time, then program this parameter to tWR + tRP.
DO NOT program this parameter with a value of 0x0, or the controller will not function
properly when auto pre-charge is enabled.

TDLL [7:0] Defines the DRAM DLL lock time, in cycles.
TEMRS [2:0] Defines the DRAM extended mode parameter set time, in cycles.
TFAW [4:0] Defines the DRAM tFAW parameter, in cycles.
TINIT [15:0] Defines the DRAM initialization time, in cycles.
TMRD [4:0] Defines the DRAM mode register set command time, in cycles.
TRAS_LOCKOUT [0] Defines the tRAS lockout setting for the DRAM device. tRAS lockout allows the

controller to execute auto pre-charge commands before the tras_min parameter has
expired.
• 0 = Tras lockout not supported by memory device.
• 1 = Tras lockout supported by memory device.

TRAS_MAX [15:0] Defines the DRAM maximum row active time, in cycles.
TRAS_MIN [7:0] Defines the DRAM minimum row activate time, in cycles.
TRC [4:0] Defines the DRAM period between active commands for the same bank, in cycles.

Table 7-33 Detailed Descriptions of the Parameters in Table 7-32 (continued)
Parameter Description
246 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.13 Port H Registers

7.13.1 Port H Function 1 (DDR SDRAM)
The DDR SDRAM signals on Port H are an extension to those on Port G. These signals are used only when the DDR
SDRAM device has a 16-bit wide data bus. In that case, Function Select for Port H must be set to 1 (DDR SDRAM).
Control of these signals occurs via the Port G DDR SDRAM registers (see Section 7.12.1).

Port H is not used for DDR SDRAM if the DDR SDRAM has an 8-bit wide data bus.

7.14 Port I Registers

7.14.1 Port I Function 3 (MII)
The MII / RMII signals on Port I are an extension to those on Port E. Control of these signals occurs via the Port E MII /
RMII registers (see Section 7.10.2).

TRCD_INT [7:0] Defines the DRAM RAS to CAS delay, in cycles
TREF [13:0] Defines the DRAM cycles between refresh commands.
TRFC [5:0] Defines the DRAM refresh command time, in cycles.
TRP [3:0] Defines the DRAM pre-charge command time, in cycles.
TRRD [2:0] Defines the DRAM activate to activate delay for different banks, in cycles.
TRTP [2:0] Defines the DRAM tRTP (read to pre-charge time) parameter, in cycles.
TWTR [2:0] Sets the number of cycles needed to switch from a write to a read operation, as

dictated by the DDR SDRAM specification.
VERSION [15:0] Holds the version number for this controller. This parameter is read-only.
WR_DQS_SHIFT [6:0] Controls the amount of delay introduced to the write datapath (the clk_wr signal) in

fractions of a cycle, to ensure the correct capture of data internally in the I/O logic.
WR_DQS_SHIFT_
BYPASS [7:0]

Controls the amount of delay introduced to the write datapath (the clk_wr signal)
when the DLL is being bypassed. This delay is introduced in fractions of a cycle to
ensure the correct capture of data internally in the I/O logic.

WRITEINTERP [0] Defines whether the controller can interrupt a write burst with a read command.
Some memory devices do not allow this functionality.
• 0 = The device does not support read commands interrupting write commands.
• 1 = The device does support read commands interrupting write commands.

WRLAT [2:0] Defines the write latency from when the write command is issued to the time the write
data is presented to the DRAM devices, in cycles.

Table 7-33 Detailed Descriptions of the Parameters in Table 7-32 (continued)
Parameter Description
www.ubicom.com 247

IP51xx Data Sheet – March 28, 2007
7.15 USB Port Registers

7.15.1 USB Port Function 1 (USB)
This section describes the function-specific attributes of the registers used when USB Port Function 1 is selected.

NOTE: When a register is not mentioned, its function is the same as the generic descriptions given in Table 7-18.

The High-Speed USB interface uses both non-blocking registers and blocking registers. The non-blocking registers are
listed first.

7.15.1.1 USB Port Interrupt Status

7.15.1.2 USB Port Interrupt Set

7.15.1.3 USB Port Interrupt Clear

Bits Field Name Description Read/
Write Reset Value

31:12 Refer to Table 7-18. RO 0x00000
11:4 Reserved RO 0x00

3 USB_CPU_
Interrupt

If enabled in the controller, asserted upon assertion of TX or RX
interrupt signal inside the controller.

RO 0x0

2 USB_SOF_PULSE If enabled in the controller, asserted upon reception of an SOF
packet.

RO 0x0

1:0 Reserved RO 0x0

Bits Field Name Description Read/
Write Reset Value

31 TX_FIFO _RESET TX FIFO Reset. Writing a 1 to this bit resets the Transmit FIFO. WO 0x0
30 RX_FIFO _RESET RX FIFO Reset. Writing a 1 to this bit resets the Receive FIFO

selected by the RX FIFO Select bit in the Function register.
WO 0x0

29:4 Reserved WO 0x0000000
3:2 Interrupt Set Writing a 1 to a given bit position sets the corresponding bit in the

Interrupt Status register.
WO 0x0

1:0 Reserved WO 0x0

Bits Field Name Description Read/
Write Reset Value

31:16 Reserved WO 0x000
15:0 Interrupt Clear Writing a 1 to a given bit position clears the corresponding bit in

the Interrupt Status register.
WO 0x0000
248 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
7.15.1.4 USB Port Function Control 0

7.15.1.5 USB Port Function Status 0

Bits Field Name Description Read/
Write Reset Value

31:5 Reserved R/W 0x0000000
4 USB_PHY_

RESETN
Active-Low logic Reset for the USB PHY. Does not stop any of the
USB PHY clock outputs when asserted. Asserted at chip reset by
default. Must be deasserted after the USB clock generator is
active.

R/W 0x0

3:0 USB_CLK_DIV Clock divisor value for the USB Core Clock Generator. R/W 0x1
0x0: Stops the USB Core Clock at the end of the current USB

Core Clock cycle.
0x1-
0xF:

Valid clock divisors. The clock frequency is core clock
divided by the value of this field + 1. For example,
1 produces core clock / 2, 2 produces core clock / 3,
3 produces core clock / 4, etc.

Bits Field Name Description Read/
Write Reset Value

31:4 Reserved RO 0x0000000
3 USB_

POWERDWN
USB Core Powerdown Status RO 0xX

2 USB_NRSTO USB Core Reset Status RO 0xX
1 USB cable power When equal to 1, this bit indicates that 5 V power is present on the

VBUS pin of the USB connector.
RO 0xX

0 USB clock valid When equal to 1, this bit indicates that the 60 MHz clock output of
the USB PHY is present and is accurate. When equal to 0, it
indicates that the clock output is stopped and held in the low
position.

RO 0xX
www.ubicom.com 249

IP51xx Data Sheet – March 28, 2007
7.15.1.6 USB Port Blocking Region Registers
The USB Port blocking region registers reside at offsets 0x00 - 0xFF in the USB Port blocking region (see Table 7-16).

Table 7-34 shows the overall organization of the USB Port blocking region. The tables beginning with Table 7-35
describe the individual registers.

Table 7-34 Organization of the USB Port Blocking Region
Offset Register Name Description

Common USB Registers (0x00 – 0x0F)
0x00 FAddr Function address register.
0x01 Power Power management register.

0x02-0x03 IntrTx Interrupt register for Endpoint 0 plus Tx Endpoints 1 to 5.
0x04-0x05 IntrRx Interrupt register for Rx Endpoints 1 to 5.
0x06-0x07 IntrTxE Interrupt enable register for IntrTx.
0x08-0x09 IntrRxE Interrupt enable register for IntrRx.

0x0A IntrUSB Interrupt register for common USB interrupts.
0x0B IntrUSBE Interrupt enable register for IntrUSB.

0x0C-0c0D Frame Frame number.
0x0E Index Index register for selecting the endpoint status and control registers.
0x0F Testmode Enables the USB test modes.

Indexed registers – Peripheral mode (0x10 – 0x1F)
Control Status registers for endpoint selected by the Index register when the Host Mode bit (DevCtl[2]) = 0

0x10-0x11 TxMaxP Maximum packet size for peripheral Tx endpoint. (Index register set to select
Endpoints 1 – 5 only).

0x12-0x13 CSR0 Control Status register for Endpoint 0. (Index register set to select Endpoint 0).
TxCSR Control Status register for peripheral Tx endpoint. (Index register set to select

Endpoints 1 – 5).
0x14-0x15 RxMaxP Maximum packet size for peripheral Rx endpoint. (Index register set to select

Endpoints 1 – 5 only).
0x16-0x17 RxCSR Control Status register for peripheral Rx endpoint. (Index register set to select

Endpoints 1 – 5 only).
0x18-0x19 Count0 Number of received bytes in Endpoint 0 FIFO. (Index register set to select

Endpoint 0).
RxCount Number of bytes in peripheral Rx endpoint FIFO. (Index register set to select

Endpoints 1 – 5).
0x1A-0x1B Reserved. Value returned affected by use in Host mode (see the following register group).
Ox1C-0x1E Unused, always returns 0.

0x1F ConfigData Returns details of core configuration. (Index register set to select Endpoint 0.)
FIFOSize Returns the configured size of the selected Rx FIFO and Tx FIFOs

(Endpoints 1 – 5 only).
Indexed registers – Host mode (0x10 – 0x1F)
Control Status registers for endpoint selected by the Index register when the Host Mode bit (DevCtl[2]) = 1

0x10-0x11 TxMaxP Maximum packet size for host Tx endpoint. (Index register set to select
Endpoints 1 – 5 only).

0x12-0x13 CSR0 Control Status register for Endpoint 0. (Index register set to select Endpoint 0).
TxCSR Control Status register for host Tx endpoint. (Index register set to select

Endpoints 1 – 5).
250 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x14-0x15 RxMaxP Maximum packet size for host Rx endpoint. (Index register set to select Endpoints
1 – 5 only).

0x16-0x17 RxCSR Control Status register for host Rx endpoint. (Index register set to select Endpoints
1 – 5 only).

0x18-0x19 Count0 Number of received bytes in Endpoint 0 FIFO. (Index register set to select
Endpoint 0).

RxCount Number of bytes in host Rx endpoint FIFO. (Index register set to select
Endpoints 1 – 5).

0x1A Type0 Defines the speed of Endpoint 0. (Index register set to select Endpoint 0).
TxType Sets the transaction protocol, speed, and peripheral endpoint number for the host

Tx endpoint. (Index register set to select Endpoints 1 – 5).
0x1B NAKLimit0 Sets the NAK response timeout on Endpoint 0. (Index register set to select

Endpoint 0).
TxInterval Sets the polling interval for Interrupt / ISOC transactions or the NAK response

timeout on Bulk transactions for host Tx endpoint. (Index register set to select
Endpoints 1 – 5 only).

Ox1C RxType Sets the transaction protocol, speed, and peripheral endpoint number for the host
Rx endpoint. (Index register set to select Endpoints 1 – 5 only).

Ox1D RxInterval Sets the polling interval for Interrupt / ISOC transactions or the NAK response
timeout on Bulk transactions for host Rx endpoint. (Index register set to select
Endpoints 1 – 5 only).

0x1E Unused, always returns 0.
0x1F ConfigData Returns details of core configuration. (Index register set to select Endpoint 0.)

FIFOSize Returns the configured size of the selected Rx FIFO and Tx FIFOs
(Endpoints 1 – 5 only).

FIFOs(0x20 – 0x5F)
0x20-0x37 FIFOx FIFOs for Endpoints 0 – 5.
0x38-0x5F Reserved

Device Control, Dynamic FIFO, Version & Vendor Registers (0x60 – 0x6F)
0x60 DevCtl Device Control register.
0x61 Unused
0x62 TxFIFOsz Tx Endpoint FIFO size. Used only when Dynamic FIFO sizing option is selected.

Otherwise returns 0.
0x63 RxFIFOsz Rx Endpoint FIFO size. Used only when Dynamic FIFO sizing option is selected.

Otherwise returns 0.
0x64-0x65 TxFIFOadd Tx Endpoint FIFO address. Used only when Dynamic FIFO sizing option is selected.

Otherwise returns 0.
0x66-0x67 RxFIFOadd Rx Endpoint FIFO address. Used only when Dynamic FIFO sizing option is selected.

Otherwise returns 0.
0x68-0x6B VControl/

VStatus
UTMI+ PHY Vendor registers

0x6C-0x6D HWVers Hardware Version Number Register
0x6E-0x6F Unused

Not Used (0x70 – 0x7F)

Table 7-34 Organization of the USB Port Blocking Region (continued)
Offset Register Name Description
www.ubicom.com 251

IP51xx Data Sheet – March 28, 2007
The tables beginning with Table 7-35 provide detailed information about the registers listed in Table 7-34.
The abbreviations in the Access columns have the following meanings:

• R/W means that the bit can be read or written.
• RO means that the bit is read only.
• Set means that the bit can be written only to set it.
• Clr means that the bit can be written only to clear it.
• RSet means that the bit can be read or set, but it

cannot be cleared.

• RClr means that the bit can be read or cleared, but it
cannot be set.

• SelfClr means that the bit will be cleared automatically
when the associated action has been executed.

• p: means Peripheral Mode
• h: means Host Mode

Target Address Registers (0x80 – 0xFF)
0x80+8*n TxFuncAddr Transmit Endpoint n Function Address (Host Mode only)
0x81+8*n Unused, always returns 0.
0x82+8*n TxHubAddr Transmit Endpoint n Hub Address (Host Mode only)
0x83+8*n TxHubPort Transmit Endpoint n Hub Port (Host Mode only)
0x84+8*n RxFuncAddr Receive Endpoint n Function Address (Host Mode only)
0x85+8*n Unused, always returns 0.
0x86+8*n RxHubAddr Receive Endpoint n Hub Address (Host Mode only)
0x87+8*n RxHubPort Receive Endpoint n Hub Port (Host Mode only)

Table 7-34 Organization of the USB Port Blocking Region (continued)
Offset Register Name Description

Table 7-35 USB Port Blocking Region: Common USB Registers

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

0x00 Faddr Function address register (peripheral mode only).
This register should be written with the 7-bit address of the peripheral part of
the transaction. When the USB controller is being used in Peripheral mode
(DevCtl[2]=0), this register should be written with the address received
through a SET_ADDRESS command, which will then be used for decoding
the function address in subsequent token packets.
This register applies only to operations carried out when the USB controller
is in Peripheral mode. In Host mode, this register is ignored.

0x00

7 Unused, always returns 0. RO -
6:0 Func Addr The function address. R/W RO
252 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x01 Power Power management register.
This is an 8-bit register that is used for controlling Suspend and Resume
signaling, and some basic operational aspects of the USB controller.

0x20

7 ISO Update When set by the CPU, the USB controller will wait for
an SOF token from the time TxPktRdy is set before
sending the packet. If an IN token is received before
an SOF token, then a zero length data packet will be
sent. Note: Valid in Peripheral Mode only. Also, this bit
only affects only endpoints performing Isochronous
transfers.

p:R/W p:RO

6 Soft Conn If Soft Connect/Disconnect feature is enabled, then
the USB D+/D- lines are enabled when this bit is set
by the CPU and tri-stated when this bit is cleared by
the CPU. Valid only in Peripheral Mode.

p:R/W p:RO

5 HS Enab When set by the CPU, the USB controller will
negotiate for High-speed mode when the device is
reset by the hub. If not set, the device will operate
only in Full-speed mode.

R/W RO

4 HS Mode When set, this read-only bit indicates High-speed
mode successfully negotiated during USB reset. In
Peripheral Mode, it becomes valid when USB reset
completes (as indicated by USB reset interrupt). In
Host Mode, it becomes valid when the Reset bit is
cleared. It remains valid for the duration of the
session. Note: Allowance is made for Tiny-J signaling
in determining the transfer speed to select.

RO R/W

3 Reset This bit is set when Reset signaling is present on the
bus. Note: This bit is Read/Write from the CPU in
Host Mode but Read-Only in Peripheral Mode.

p:RO
h:R/W

R/W

2 Resume Set by the CPU to generate Resume signaling when
the function is in Suspend mode. The CPU should
clear this bit after 10 ms (a maximum of 15 ms) to end
Resume signaling. In Host mode, this bit is also
automatically set when Resume signaling from the
target is detected while the USB controller is
suspended.

R/W p:RO
h:RSet

1 Suspend Mode In Host mode, this bit is set by the CPU to enter
Suspend mode. In Peripheral mode, this bit is set on
entry into Suspend mode. It is cleared when the CPU
reads the interrupt register, or sets the Resume bit
above.

p:RO
h:Set

p:R/W
h:Clr

0 Enable
SuspendM

Set by the CPU to enable the SUSPENDM signal. R/W RO

Table 7-35 USB Port Blocking Region: Common USB Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 253

IP51xx Data Sheet – March 28, 2007
0x02-
0x03

IntrTx Interrupt register for Endpoint 0 plus Tx Endpoints 1 to 5.
This is a 16-bit read-only register that indicates which interrupts are currently
active for Endpoint 0 and the Tx Endpoints 1 to 5.
Bits relating to endpoints that have not been configured will always return 0.
Note also that all active interrupts are cleared when this register is read.

RO Set 0x0000

15:14 Unused, always returns 0.
13 EP5 Tx Tx Endpoint 5 interrupt.
12 EP4 Tx Tx Endpoint 4 interrupt.
11 EP3 Tx Tx Endpoint 3 interrupt.
10 EP2 Tx Tx Endpoint 2 interrupt.
9 EP1 Tx Tx Endpoint 1 interrupt.
8 EP0 Endpoint 0 interrupt.

7:0 Unused, always returns 0.
0x04-
0x05

IntrRx Interrupt register for Rx Endpoints 1 to 5.
This is an 16-bit read-only register that indicates which of the interrupts for
Rx Endpoints 1 to 5 are currently active.
Bits relating to endpoints that have not been configured will always return 0.
Note also that all active interrupts are cleared when this register is read.

RO Set 0x0000

15:14 Unused, always returns 0.
13 EP5 Rx Rx Endpoint 5 interrupt.
12 EP4 Rx Rx Endpoint 4 interrupt.
11 EP3 Rx Rx Endpoint 3 interrupt.
10 EP2 Rx Rx Endpoint 2 interrupt.
9 EP1 Rx Rx Endpoint 1 interrupt.

8:0 Unused, always returns 0. RO RO
0x06-
0x07

IntrTxE Interrupt enable register for IntrTx. This is a 16-bit register that provides
interrupt enable bits for the interrupts in IntrTx. On reset, the bits
corresponding to Endpoint 0 and the Tx endpoints included in the design are
set to 1, while the remaining bits are set to 0. Bits relating to endpoints that
have not been configured will always return 0.

R/W RO 0x0F00

15:14 Unused, always returns 0.
13 EP5 Tx Tx Endpoint 5 interrupt enable.
12 EP4 Tx Tx Endpoint 4 interrupt enable.
11 EP3 Tx Tx Endpoint 3 interrupt enable.
10 EP2 Tx Tx Endpoint 2 interrupt enable.
9 EP1 Tx Tx Endpoint 1 interrupt enable.
8 EP0 Tx Endpoint 0 interrupt enable.

7:0 Unused, always returns 0.

Table 7-35 USB Port Blocking Region: Common USB Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
254 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x08-
0x09

IntrRxE Interrupt enable register for IntrRx. This is a 16-bit register that provides
interrupt enable bits for the interrupts in IntrRx. On reset, the bits
corresponding to the Rx endpoints included in the design are set to 1, while
the remaining bits are set to 0. Bits relating to endpoints that have not been
configured will always return 0.

R/W RO 0xFE00

15:14 Unused, always returns 0.
13 EP5 Rx Rx Endpoint 5 interrupt enable.
12 EP4 Rx Rx Endpoint 4 interrupt enable.
11 EP3 Rx Rx Endpoint 3 interrupt enable.
10 EP2 Rx Rx Endpoint 2 interrupt enable.
9 EP1 Rx Rx Endpoint 1 interrupt enable.

8:0 Unused, always returns 0. RO RO
0x0A IntrUSB Interrupt register for common USB interrupts. This is an 8-bit read-only

register that indicates which USB interrupts are currently active. All active
interrupts will be cleared when this register is read.

RO Set 0x00

7 VBus Error Set when VBus drops below the VBus Valid threshold
during a session. Valid only when the USB controller
is a Host device.

6 Sess Req Set when Session Request signaling has been
detected. Valid only when the USB controller is a Host
device.

5 Discon Set in Host mode when a device disconnect is
detected. Set in Peripheral mode when a session
ends. Valid at all transaction speeds.

4 Conn Set when a device connection is detected. Valid only
in Host mode. Valid at all transaction speeds.

3 SOF Start of Frame. Set when a new frame starts.
2 Reset Set in Peripheral mode when Reset signaling is

detected on the bus.
Babble Set in Host mode when babble is detected.

1 Resume Set when Resume signaling is detected on the bus
while the USB controller is in Suspend mode.

0 Suspend Set when Suspend signaling is detected on the bus.
Valid only in Peripheral mode.

0x0B IntrUSBE Interrupt enable register for IntrUSB. This is an 8-bit register that provides
interrupt enable bits for each of the interrupts in IntrUSB.

R/W RO 0x06

7 VBus Error VBus Error interrupt enable.
6 Sess Req Sess Req interrupt enable.
5 Discon Discon interrupt enable.
4 Conn Conn interrupt enable.
3 SOF SOF interrupt enable.
2 Reset / Babble Reset / Babble interrupt enable.
1 Resume Resume interrupt enable.
0 Suspend Suspend interrupt enable.

Table 7-35 USB Port Blocking Region: Common USB Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 255

IP51xx Data Sheet – March 28, 2007
0x0C-
0x0D

Frame Frame number. Frame is a 16-bit read-only register that holds the last
received frame number.

RO WO 0x0000

7:3 00000 Always zero.
2:0,
15:8

Frame Number The last received frame number.

0x0E Index Index register for selecting the endpoint status and control registers. Each Tx
endpoint and each Rx endpoint has its own set of control / status registers
located between 0x100 and 0x1FF. In addition, one set of Tx control / status
and one set of Rx control / status registers appear at 0x10 – 0x19. Index is a
4-bit register that determines which endpoint control / status registers are
accessed. Before accessing an endpoint’s control / status registers at 0x10 –
0x19, the endpoint number should be written to the Index register to ensure
that the correct control / status registers appear in the memory map.

0x00

7:4 Unused, always returns 0. RO RO
3:0 Selected

Endpoint
The 4-bit selected endpoint value. Bit 3 is the MSB
and Bit 0 is the LSB.

R/W RO

Table 7-35 USB Port Blocking Region: Common USB Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
256 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x0F Test-
mode

Enables the USB test modes. This is an 8-bit register that is primarily used to
put the USB controller into one of the four test modes for High-speed
operation described in the USB specification – in response to a SET
FEATURE: TESTMODE command. It is not used in normal operation.

0x00

7 Force_Host The CPU sets this bit to instruct the core to enter Host
mode when the Session bit is set, regardless of
whether it is connected to any peripheral. The state of
the CID input, HostDisconnect and LineState signals
are ignored. The core will then remain in Host mode
until the Session bit is cleared, even if a device is
disconnected, and if the Force_Host bit remains set,
will re-enter Host mode the next time the Session bit
is set.
While in this mode, the status of the HOSTDISCON
signal from the PHY may be read from bit 7 of the
DevCtl register. The operating speed is determined
from the Force_HS and Force_FS bits as follows:

R/W RO

6 FIFO_Access
(self-clearing)

The CPU sets this bit to transfer the packet in the
Endpoint 0 Tx FIFO to the Endpoint 0 Rx FIFO.
It is cleared automatically when the packet has been
transferred.

Set RO

5 Force_FS The CPU sets this bit either in conjunction with bit 7
above or to force the USB controller into Full-Speed
mode when it receives a USB reset.

R/W RO

4 Force_HS The CPU sets this bit either in conjunction with bit 7
above or to force the USB Controller into High-Speed
mode when it receives a USB reset.

R/W RO

3 Test_Packet (High-speed mode) The CPU sets this bit to enter the
Test_Packet test mode. In this mode, the USB
controller repetitively transmits on the bus a 53-byte
test packet, defined in the Universal Serial Bus
Specification Revision 2.0, Section 7.1.20. The test
packet has a fixed format and must be loaded into the
Endpoint 0 FIFO before the test mode is entered.

R/W RO

2 Test_K (High-speed mode) The CPU sets this bit to enter the
Test_K test mode. In this mode, the USB controller
transmits a continuous K on the bus.

R/W RO

1 Test_J (High-speed mode) The CPU sets this bit to enter the
Test_J test mode. In this mode, the USB controller
transmits a continuous J on the bus.

R/W RO

0 Test_SE0_
NAK

(High-speed mode) The CPU sets this bit to enter the
Test_SE0_NAK test mode. In this mode, the USB
controller remains in High-speed mode but responds
to any valid IN token with a NAK.

R/W RO

Table 7-35 USB Port Blocking Region: Common USB Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

Force_HS Force_FS Operating Speed
0 0 Undefined
0 1 Full Speed
1 0 High Speed
1 1 Undefined
www.ubicom.com 257

IP51xx Data Sheet – March 28, 2007
Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

0x10-
0x11

TxMaxP Maximum packet size for peripheral Tx endpoint. (Index register set to select
Endpoints 1 – 5 only). The maximum amount of data that can be transferred
through the selected Tx endpoint in a single operation. There is a TxMaxP
register for each Tx endpoint (except Endpoint 0).

R/W RO 0x0000

7:3 m-1 Where the option of High-bandwidth Isochronous /
Interrupt endpoints or of packet splitting on Bulk
endpoints has been taken when the core is
configured, the register includes either 2 or 5 further
bits that define a multiplier m which is equal to one
more than the value recorded.

2:0
15:8

Max Payload
(2:0 are MSB,
15:8 are LSB)

Maximum payload per transaction. These 11 bits
define (in bytes) the maximum payload transmitted in
a single transaction. The value set can be up to 1024
bytes, but is subject to the constraints placed by the
USB 2.0 Specification on packet sizes for Bulk,
Interrupt and Isochronous transfers in Full-speed and
High-speed operations.
The total amount of data represented by the value
written to this register (specified payload × m) must
not exceed the FIFO size for the Tx endpoint, and
should not exceed half the FIFO size if double-
buffering is required.

0x12-
0x13

CSR0 Control Status register for Endpoint 0. (Index register set to select
Endpoint 0)

0x0000

15 ServicedSetup
End

The CPU writes a 1 to this bit to clear the SetupEnd
bit. It is cleared automatically.

Set RO

14 ServicedRxPkt
Rdy

The CPU writes a 1 to this bit to clear the RxPktRdy
bit. It is cleared automatically.

Set RO

13 SendStall The CPU writes a 1 to this bit to terminate the current
transaction. The STALL handshake will be transmitted
and then this bit will be cleared automatically.

Set RO

12 SetupEnd This bit will be set when a control transaction ends
before the DataEnd bit has been set. An interrupt will
be generated and the FIFO flushed at this time. The
bit is cleared by the CPU writing a 1 to the
ServicedSetupEnd bit.

RO Set

11 DataEnd The CPU sets this bit:
1. When setting TxPktRdy for the last data packet.
2. When clearing RxPktRdy after unloading the last
data packet.
3. When setting TxPktRdy for a zero length data
packet.
It is cleared automatically.

Set RO

10 SentStall This bit is set when a STALL handshake is
transmitted. The CPU should clear this bit.

RClr Set

9 TxPktRdy The CPU sets this bit after loading a data packet into
the FIFO. It is cleared automatically when the data
packet has been transmitted. An interrupt is
generated (if enabled) when the bit is cleared.

RSet RO
258 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
8 RxPktRdy This bit is set when a data packet has been received.
An interrupt is generated when this bit is set. The
CPU clears this bit by setting the ServicedRxPktRdy
bit.

RO Set

7:1 Unused. Returns 0 when read. RO RO
0 FlushFIFO The CPU writes a 1 to this bit to flush the next packet

to be transmitted/read from the Endpoint 0 FIFO. The
FIFO pointer is reset and the TxPktRdy / RxPktRdy bit
(below) is cleared. FlushFIFO should be used only
when TxPktRdy/RxPktRdy is set. At other times, it
may cause data to be corrupted.

Set RO

0x12-
0x13

TxCSR Control Status register for peripheral Tx endpoint. (Index register set to select
Endpoints 1 – 5). There is a TxCSR register for each configured Tx endpoint
(not including Endpoint 0).

0x0000

15 IncompTx When the endpoint is being used for high-bandwidth
Isochronous / Interrupt transfers, this bit is set to
indicate where a large packet has been split into 2 or
3 packets for transmission but insufficient IN tokens
have been received to send all the parts. Note: In
anything other than a high bandwidth transfer, this bit
will always return 0.

RClr Set

14 ClrDataTog The CPU writes a 1 to this bit to reset the endpoint
data toggle to 0.

Set RClr

13 SentStall This bit is set when a STALL handshake is
transmitted. The FIFO is flushed and the TxPktRdy bit
is cleared (see below). The CPU should clear this bit.

RClr Set

12 SendStall The CPU writes a 1 to this bit to issue a STALL
handshake to an IN token. The CPU clears this bit to
terminate the stall condition. Note: This bit has no
effect where the endpoint is being used for
Isochronous transfers.

R/W RO

11 FlushFIFO The CPU writes a 1 to this bit to flush the latest packet
from the endpoint Tx FIFO. The FIFO pointer is reset,
the TxPktRdy bit (below) is cleared and an interrupt is
generated. May be set simultaneously with TxPktRdy
to abort the packet that is currently being loaded into
the FIFO. FlushFIFO should only be used when
TxPktRdy is set. At other times, it may cause data to
be corrupted. If the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely
clear the FIFO.

Set RO

10 UnderRun The USB sets this bit if an IN token is received when
the TxPktRdy bit not set. The CPU should clear this
bit.

RClr Set

9 FIFONotEmpty The USB sets this bit when there is at least one
packet in the Tx FIFO.

RClr Set

Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 259

IP51xx Data Sheet – March 28, 2007
8 TxPktRdy The CPU sets this bit after loading a data packet into
the FIFO. It is cleared automatically when a data
packet has been transmitted. An interrupt is also
generated at this point (if enabled). TxPktRdy is also
automatically cleared prior to loading a second packet
into a double-buffered FIFO.

RSet Clr

7 AutoSet If the CPU sets this bit, TxPktRdy will be automatically
set when data of the maximum packet size (value in
TxMaxP) is loaded into the Tx FIFO. If a packet of
less than the maximum packet size is loaded, then
TxPktRdy will have to be set manually. This bit should
not be set for high-bandwidth Isochronous endpoints.

R/W RO

6 ISO The CPU sets this bit to enable the Tx endpoint for
Isochronous transfers, and clears it to enable the Tx
endpoint for Bulk or Interrupt transfers. Note: This bit
has any effect only in Peripheral mode. In Host mode,
it always returns zero.

R/W RO

5 Mode The CPU sets this bit to enable the endpoint direction
as Tx, and clears it to enable the endpoint direction as
Rx. Note: This bit has any effect only where the same
endpoint FIFO is used for both Tx and Rx
transactions.

R/W RO

4 Unused. Returns 0 when read. RO RO
3 FrcDataTog The CPU sets this bit to force the endpoint data toggle

to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received.
This can be used by Interrupt Tx endpoints that are
used to communicate rate feedback for Isochronous
endpoints.

R/W RO

2:0 Unused, always returns 0. RO RO

Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
260 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x14-
0x15

RxMaxP Maximum packet size for peripheral Rx endpoint. (Index register set to select
Endpoints 1 – 5 only). The maximum amount of data that can be transferred
through the selected Rx endpoint in a single operation. There is an RxMaxP
register for each Rx endpoint (except Endpoint 0).
7:3 m-1 Where the option of High-bandwidth Isochronous /

Interrupt endpoints or of combining Bulk packets has
been taken when the core is configured, the register
includes either 2 or 5 further bits that define a
multiplier m which is equal to one more than the value
recorded.

2:0
15:8

Max Payload
(2:0 are MSB,
15:8 are LSB)

Maximum payload per transaction. These 11 bits
define (in bytes) the maximum payload transmitted in
a single transaction. The value set can be up to 1024
bytes but is subject to the constraints placed by the
USB 2.0 Specification on packet sizes for Bulk,
Interrupt and Isochronous transfers in Full-speed and
High-speed operations.
The total amount of data represented by the value
written to this register (specified payload × m) must
not exceed the FIFO size for the OUT endpoint, and
should not exceed half the FIFO size if double-
buffering is required.

0x16-
0x17

RxCSR Control Status register for peripheral Rx endpoint. (Index register set to
select Endpoints 1 – 5 only). There is an RxCSR register for each configured
Rx endpoint (not including Endpoint 0).

0x0000

15 ClrDataTog The CPU writes a 1 to this bit to reset the endpoint
data toggle to 0.

Set RClr

14 SentStall This bit is set when a STALL handshake is
transmitted. The CPU should clear this bit.

RClr Set

13 SendStall The CPU writes a 1 to this bit to issue a STALL
handshake. The CPU clears this bit to terminate the
stall condition. This bit has no effect where the
endpoint is being used for Isochronous transfers.

R/W RO

12 FlushFIFO The CPU writes a 1 to this bit to flush the next packet
to be read from the endpoint Rx FIFO. The FIFO
pointer is reset and the RxPktRdy bit (below) is
cleared. FlushFIFO should be used only when
RxPktRdy is set. At other times, it may cause data to
be corrupted. If the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely
clear the FIFO.

Set RO

11 DataError This bit is set when RxPktRdy is set if the data packet
has a CRC or bit-stuff error. It is cleared when
RxPktRdy is cleared. This bit is valid only when the
endpoint is operating in ISO mode. In Bulk mode, it
always returns zero.

RO Set

10 OverRun This bit is set if an OUT packet cannot be loaded into
the Rx FIFO. The CPU should clear this bit. This bit is
valid only when the endpoint is operating in ISO
mode. In Bulk mode, it always returns zero.

RClr Set

Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 261

IP51xx Data Sheet – March 28, 2007
9 FIFOFull This bit is set when no more packets can be loaded
into the Rx FIFO.

RO Set

8 RxPktRdy This bit is set when a data packet has been received.
The CPU should clear this bit when the packet has
been unloaded from the Rx FIFO. An interrupt is
generated when this bit is set.

RClR Set

7 AutoClear If the CPU sets this bit, then the RxPktRdy bit will be
automatically cleared when a packet of RxMaxP
bytes has been unloaded from the Rx FIFO. When
packets of less than the maximum packet size are
unloaded, RxPktRdy will have to be cleared manually.
Note: Should not be set for high-bandwidth
Isochronous endpoints.

R/W RO

6 ISO The CPU sets this bit to enable the Rx endpoint for
Isochronous transfers, and clears it to enable the Rx
endpoint for Bulk / Interrupt transfers.

R/W RO

5 Unused. Returns 0 when read. RO RO
4 DisNyet

PID Error

Bulk/Interrupt Transactions: The CPU sets this bit to
disable the sending of NYET handshakes. When set,
all successfully received Rx packets are ACKed,
including at the point at which the FIFO becomes full.
Note: This bit only has any effect only in High-speed
mode, in which mode it should be set for all Interrupt
endpoints.

ISO Transactions: The core sets this bit to indicate a
PID error in the received packet.

R/W /
RO

RO /
R/W

3:1 Unused, always returns 0. RO RO
0 IncompRx This bit is set in a high-bandwidth Isochronous

transfer if the packet in the Rx FIFO is incomplete
because parts of the data were not received. It is
cleared when RxPktRdy is cleared. In anything other
than a high-bandwidth Isochronous transfer, this bit
will always return 0.

RO Set

0x18-
0x19

Count0 Number of received bytes in Endpoint 0 FIFO. (Index register set to select
Endpoint 0). The value returned changes as the contents of the FIFO change
and is valid only while RxPktRdy (CSR0[0]) is set.

0x00

14:8 Count0 Endpoint 0 Rx Count. RO WO
15
7:0

Unused, always returns 0. RO RO

0x18-
0x19

RxCount Number of bytes in peripheral Rx endpoint FIFO. (Index register set to select
Endpoints 1 – 5). The value returned changes as the FIFO is unloaded and is
valid only while RxPktRdy (RxCSR[0]) is set.

0x0000

4:0
15:8

RxCount
(4:0 are MSB,
15:8 are LSB)

Endpoint Rx Count. RO WO

7:3 Unused, always returns 0. RO RO
0x1A-
0x1B

Reserved. Value returned affected by use in Host mode (see Table 7-37).

Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
262 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x1C-
0x1E

Unused, always returns 0.

0x1F Config
Data

Returns details of core configuration. (Index register set to select
Endpoint 0.)

RO RO Configu-
ration

Depen-
dent

7 MPRxE Set to 1 when automatic amalgamation of bulk
packets is selected.

6 MPTxE Set to 1 when automatic splitting of bulk packets is
selected.

5 BigEndian Set to 1 when Big Endian ordering is selected.
4 HBRxE Set to 1 when High-bandwidth Rx ISO Endpoint

Support is selected.
3 HBTxE Set to 1 when High-bandwidth Tx ISO Endpoint

Support is selected.
2 DynFIFO

Sizing
Set to 1 when Dynamic FIFO Sizing option is
selected.

1 SoftConE Set to 1 when Soft Connect/Disconnect option is
selected.

0 UTMI
DataWidth

Indicates selected UTMI+ data width:
1: 16 bits
0: 8 bits

0x1F FIFO
Size

Returns the sizes of the FIFOs associated with the selected additional Tx
and Rx endpoints. Values 3 – 13 correspond to a FIFO size of 2n bytes
(8 – 8192 bytes). If an endpoint has not been configured, a value of 0 will be
displayed. Where the Tx and Rx endpoints share the same FIFO, the Rx
FIFO size will be encoded as 0xF.
Note: This register has this interpretation only when the Index register is set
to select one of Endpoints 1 – 5 and Dynamic FIFO Sizing is not selected. It
has a special interpretation when the Index register is set to select Endpoint
0 (see ConfigData above). The result returned is not valid where Dynamic
FIFO sizing is used.

RO RO Configu-
ration

Depen-
dent

7:4 Rx FIFO Size Size of the Rx FIFO for the selected Rx endpoint.
3:0 Tx FIFO Size Size of the Tx FIFO for the selected Tx endpoint.

Table 7-36 USB Port Blocking Region: Indexed registers – Peripheral mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 263

IP51xx Data Sheet – March 28, 2007
Table 7-37 USB Port Blocking Region: Indexed registers – Host mode

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

0x10-
0x11

TxMaxP Maximum packet size for host Tx endpoint. (Index register set to select
Endpoints 1 – 5 only). The maximum amount of data that can be transferred
through the selected Tx endpoint in a single operation. There is a TxMaxP
register for each Tx endpoint (except Endpoint 0).

R/W RO 0x0000

7:3 m-1 Where the option of High-bandwidth Isochronous /
Interrupt endpoints or of packet splitting on Bulk
endpoints has been taken when the core is
configured, the register includes either 2 or 5 further
bits that define a multiplier m which is equal to one
more than the value recorded.

2:0
15:8

Max Payload
(2:0 are MSB,
15:8 are LSB)

Maximum payload per transaction. These 11 bits
define (in bytes) the maximum payload transmitted in
a single transaction. The value set can be up to 1024
bytes but is subject to the constraints placed by the
USB 2.0 Specification on packet sizes for Bulk,
Interrupt and Isochronous transfers in Full-speed and
High-speed operations.
The total amount of data represented by the value
written to this register (specified payload × m) must
not exceed the FIFO size for the Tx endpoint, and
should not exceed half the FIFO size if double-
buffering is required.

0x12-
0x13

CSR0 Control Status register for Endpoint 0. (Index register set to select
Endpoint 0)

0x0000

15 NAK Timeout This bit will be set when Endpoint 0 is halted following
the receipt of NAK responses for longer than the time
set by the NAKLimit0 register. The CPU should clear
this bit to allow the endpoint to continue.

RClr Set

14 StatusPkt The CPU sets this bit at the same time as the
TxPktRdy or ReqPkt bit is set, to perform a status
stage transaction. Setting this bit ensures that the
data toggle is set to 1 so that a DATA1 packet is used
for the Status Stage transaction.

R/W RO

13 ReqPkt The CPU sets this bit to request an IN transaction. It
is cleared when RxPktRdy is set.

R/W R/W

12 Error This bit will be set when three attempts have been
made to perform a transaction with no response from
the peripheral. The CPU should clear this bit. An
interrupt is generated when this bit is set.

RClr Set

11 SetupPkt The CPU sets this bit, at the same time as the
TxPktRdy bit is set, to send a SETUP token instead of
an OUT token for the transaction. Note: Setting this
bit also clears the Data Toggle.

RClr RO

10 RxStall This bit is set when a STALL handshake is received.
The CPU should clear this bit.

RClr Set

9 TxPktRdy The CPU sets this bit after loading a data packet into
the FIFO. It is cleared automatically when the data
packet has been transmitted. An interrupt is
generated (if enabled) when the bit is cleared.

RSet Clr
264 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
8 RxPktRdy This bit is set when a data packet has been received.
An interrupt is generated (if enabled) when this bit is
set. The CPU should clear this bit when the packet
has been read from the FIFO.

RClr R/W

7:4 Unused. Returns 0 when read. RO RO
3 Dis Ping The CPU writes a 1 to this bit to instruct the core not

to issue PING tokens in data and status phases of a
high-speed Control transfer (for use with devices that
do not respond to PING).

R/W RO

2 Data Toggle
Write Enable

The CPU writes a 1 to this bit to enable the current
state of the Endpoint 0 data toggle to be written (see
Data Toggle bit, below). This bit is automatically
cleared once the new value is written.

Set RO

1 Data Toggle When read, this bit indicates the current state of the
Endpoint 0 data toggle. If bit 10 is high, this bit may be
written with the required setting of the data toggle. If
bit 10 is low, any value written to this bit is ignored.

R/W R/W

0 FlushFIFO The CPU writes a 1 to this bit to flush the next packet
to be transmitted / read from the Endpoint 0 FIFO.
The FIFO pointer is reset and the TxPktRdy /
RxPktRdy bit (below) is cleared. FlushFIFO should be
used only when TxPktRdy / RxPktRdy is set. At other
times, it may cause data to be corrupted.

Set RO

0x12-
0x13

TxCSR Control Status register for host Tx endpoint. (Index register set to select
Endpoints 1 – 5). There is a TxCSR register for each configured Tx endpoint
(not including Endpoint 0).

0x0000

15 NAK Timeout This bit will be set when the Tx endpoint is halted
following the receipt of NAK responses for longer than
the time set as the NAK Limit by the TxInterval
register. The CPU should clear this bit to allow the
endpoint to continue. Valid only for Bulk endpoints.

RClr Set

14 ClrDataTog The CPU writes a 1 to this bit to reset the endpoint
data toggle to 0.

Set RClr

13 RxStall This bit is set when a STALL handshake is received.
When this bit is set, the FIFO is completely flushed
and the TxPktRdy bit is cleared (see below). The CPU
should clear this bit.

RClr Set

12 SetupPkt The CPU sets this bit, at the same time as the
TxPktRdy bit is set, to send a SETUP token instead of
an OUT token for the transaction. Setting this bit also
clears the Data Toggle.

R/W RO

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 265

IP51xx Data Sheet – March 28, 2007
11 FlushFIFO The CPU writes a 1 to this bit to flush the latest packet
from the endpoint Tx FIFO. The FIFO pointer is reset,
the TxPktRdy bit (below) is cleared and an interrupt is
generated. May be set simultaneously with TxPktRdy
to abort the packet that is currently being loaded into
the FIFO. FlushFIFO should be used only when
TxPktRdy is set. At other times, it may cause data to
be corrupted. If the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely
clear the FIFO.

Set RO

10 Error The USB sets this bit when three attempts have been
made to send a packet and no handshake packet has
been received. When the bit is set, an interrupt is
generated, TxPktRdy is cleared and the FIFO is
completely flushed. The CPU should clear this bit.
Valid only when the endpoint is operating in Bulk or
Interrupt mode.

RClr R/W

9 FIFONotEmpty The USB sets this bit when there is at least one
packet in the Tx FIFO.

RClr Set

8 TxPktRdy The CPU sets this bit after loading a data packet into
the FIFO. It is cleared automatically when a data
packet has been transmitted. An interrupt is also
generated at this point (if enabled). TxPktRdy is also
automatically cleared prior to loading a second packet
into a double-buffered FIFO.

RSet Clr

7 AutoSet If the CPU sets this bit, TxPktRdy will be automatically
set when data of the maximum packet size (value in
TxMaxP) is loaded into the Tx FIFO. If a packet of
less than the maximum packet size is loaded, then
TxPktRdy will have to be set manually. This bit should
not be set for high-bandwidth Isochronous endpoints.

R/W RO

6 Unused, always returns zero. RO RO
5 Mode The CPU sets this bit to enable the endpoint direction

as Tx, and clears it to enable the endpoint direction as
Rx. This bit has any effect onlywhere the same
endpoint FIFO is used for both Tx and Rx
transactions.

R/W RO

4 Unused. Returns 0 when read. RO RO
3 FrcDataTog The CPU sets this bit to force the endpoint data toggle

to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received.
This can be used by Interrupt Tx endpoints that are
used to communicate rate feedback for Isochronous
endpoints.

R/W RO

2 Unused. Returns 0 when read. RO RO
1 Data Toggle

Write Enable
The CPU writes a 1 to this bit to enable the current
state of the Tx Endpoint data toggle to be written (see
Data Toggle bit, below). This bit is automatically
cleared once the new value is written.

Set RO

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
266 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0 Data Toggle When read, this bit indicates the current state of the
Tx Endpoint data toggle. If bit 1 is high, this bit may be
written with the required setting of the data toggle. If
bit 1 is low, any value written to this bit is ignored.

R/W R/W

0x14-
0x15

RxMaxP Maximum packet size for host Rx endpoint. (Index register set to select
Endpoints 1 – 5 only). The maximum amount of data that can be transferred
through the selected Rx endpoint in a single operation. There is an RxMaxP
register for each Rx endpoint (except Endpoint 0).
7:3 m-1 Where the option of High-bandwidth Isochronous /

Interrupt endpoints or of combining Bulk packets has
been taken when the core is configured, the register
includes either 2 or 5 further bits that define a
multiplier m which is equal to one more than the value
recorded.

2:0
15:8

Max Payload
(2:0 are MSB,
15:8 are LSB)

Maximum payload per transaction. These 11 bits
define (in bytes) the maximum payload transmitted in
a single transaction. The value set can be up to 1024
bytes but is subject to the constraints placed by the
USB 2.0 Specification on packet sizes for Bulk,
Interrupt and Isochronous transfers in Full-speed and
High-speed operations.
The total amount of data represented by the value
written to this register (specified payload × m) must
not exceed the FIFO size for the OUT endpoint, and
should not exceed half the FIFO size if double-
buffering is required.

0x16-
0x17

RxCSR Control Status register for host Rx endpoint. (Index register set to select
Endpoints 1 – 5 only). There is an RxCSR register for each configured Rx
endpoint (not including Endpoint 0).

0x0000

15 ClrDataTog The CPU writes a 1 to this bit to reset the endpoint
data toggle to 0.

Set RClr

14 RxStall When a STALL handshake is received, this bit is set
and an interrupt is generated. The CPU should clear
this bit.

RClr Set

13 ReqPkt The CPU writes a 1 to this bit to request an IN
transaction. It is cleared when RxPktRdy is set.

R/W R/W

12 FlushFIFO The CPU writes a 1 to this bit to flush the next packet
to be read from the endpoint Rx FIFO. The FIFO
pointer is reset and the RxPktRdy bit (below) is
cleared. FlushFIFO should be used only when
RxPktRdy is set. At other times, it may cause data to
be corrupted. If the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely
clear the FIFO.

Set RO

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 267

IP51xx Data Sheet – March 28, 2007
11 DataError

NAK Timeout

ISO mode: this bit is set when RxPktRdy is set if the
data packet has a CRC error or bit-stuff error and
cleared when RxPktRdy is cleared.

Bulk mode: This bit will be set when the Rx endpoint
is halted following the receipt of NAK responses for
longer than the time set as the NAK Limit by the
RxInterval register. The CPU should clear this bit to
allow the endpoint to continue.

R(/Clr) Set

10 Error The USB sets this bit when three attempts have been
made to receive a packet and no data packet has
been received. The CPU should clear this bit. An
interrupt is generated when the bit is set. This bit is
valid only when the Tx endpoint is operating in Bulk or
Interrupt mode. In ISO mode, it always returns zero.

RClr Set

9 FIFOFull This bit is set when no more packets can be loaded
into the Rx FIFO.

RO Set

8 RxPktRdy This bit is set when a data packet has been received.
The CPU should clear this bit when the packet has
been unloaded from the Rx FIFO. An interrupt is
generated when this bit is set.

RClr Set

7 AutoClear If the CPU sets this bit, then the RxPktRdy bit will be
automatically cleared when a packet of RxMaxP
bytes has been unloaded from the Rx FIFO. When
packets of less than the maximum packet size are
unloaded, RxPktRdy will have to be cleared manually.
This bit should not be set for high-bandwidth
Isochronous endpoints.

R/W RO

6 AutoReq If the CPU sets this bit, the ReqPkt bit will be
automatically set when the RxPktRdy bit is cleared.

R/W RO

5 Unused. Returns 0 when read. RO RO
4 PID Error ISO Transactions Only: The core sets this bit to

indicate a PID error in the received packet.
Bulk / Interrupt Transactions: The setting of this bit is
ignored.

RO R/W

3 Unused. Returns 0 when read. RO RO
2 Data Toggle

Write Enable
The CPU writes a 1 to this bit to enable the current
state of the Rx Endpoint data toggle to be written (see
Data Toggle bit, below). This bit is automatically
cleared once the new value is written.

RO RO

1 Data Toggle When read, this bit indicates the current state of the
Rx Endpoint data toggle. If bit 2 is high, this bit may
be written with the required setting of the data toggle.
If bit 2 is low, any value written to this bit is ignored.

RO RO

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
268 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0 IncompRx This bit will be set in a high-bandwidth Isochronous
transfer if the packet received is incomplete. It will be
cleared when RxPktRdy is cleared. If USB protocols
are followed correctly, this bit should never be set.
This bit becoming set indicates a failure of the
associated Peripheral device to behave correctly. (In
anything other than a high-bandwidth Isochronous
transfer, this bit will always return 0.)

RO Set

0x18-
0x19

Count0 Number of received bytes in Endpoint 0 FIFO. (Index register set to select
Endpoint 0). The value returned changes as the contents of the FIFO change
and is valid only while RxPktRdy (CSR0[0]) is set.

0x00

14:8 Count0 Endpoint 0 Rx Count. RO WO
15
7:0

Unused, always returns 0. RO RO

0x18-
0x19

RxCount Number of bytes in host Rx endpoint FIFO. (Index register set to select
Endpoints 1 – 5). The value returned changes as the FIFO is unloaded and is
valid only while RxPktRdy (RxCSR[0]) is set.

0x0000

4:0
15:8

RxCount
(4:0 are MSB,
15:8 are LSB)

Endpoint Rx Count. RO WO

7:3 Unused, always returns 0. RO RO
0x1A Type0 Defines the speed of Endpoint 0. (Index register set to select Endpoint 0).

7:6 Speed Operating speed of the target device: R/W RO 0x00
00: Unused (If selected, the target will be

assumed to be using the same connection
speed as the core.)

01: High speed
10: Full speed
11: Reserved

5:0 Not implemented.

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 269

IP51xx Data Sheet – March 28, 2007
0x1A TxType Sets the transaction protocol, speed, and peripheral endpoint number for the
host Tx endpoint. (Index register set to select Endpoints 1 – 5). There is a
TxType register for each configured Tx endpoint (except Endpoint 0, which
has its own Type0 register at 0x1A).

R/W RO 0x00

7:6 Speed Operating speed of the target device:
00: Unused (If selected, the target will be

assumed to be using the same connection
speed as the core.)

01: High speed
10: Full speed
11: Reserved

5:4 Protocol :The CPU should set this to select the required
protocol for the Tx endpoint:

00: Control
01: Isochronous
10: Bulk
11: Interrupt

3:0 Target
Endpoint
Number

The CPU should set this value to the endpoint
number contained in the Tx endpoint descriptor
returned to the USB controller during device
enumeration.

0x1B NAK
Limit0

Sets the NAK response timeout on Endpoint 0. (Index register set to select
Endpoint 0). NAKLimit0 sets the number of frames / microframes (High-
speed transfers) after which Endpoint 0 should timeout on receiving a stream
of NAK responses. (Equivalent settings for other endpoints can be made
through their TxInterval and RxInterval registers). The number of frames /
microframes selected is 2(m-1) (where m is the value set in the register, valid
values 2 – 16). If the host receives NAK responses from the target for more
frames than the number represented by the Limit set in this register, the
endpoint will be halted. A value of 0 or 1 disables the NAK timeout function.

R/W RO 0x00

4:0 NAK Limit Endpoint 0 NAK Limit (m).
0x1B Tx

Interval
For Interrupt and Isochronous transfers, TxInterval defines the polling
interval for the currently-selected Tx endpoint. For Bulk endpoints, this
register sets the number of frames / microframes after which the endpoint
should timeout on receiving a stream of NAK responses. There is a
TxInterval register for each configured Tx endpoint (except Endpoint 0).

R/W RO 0x00

7:0 The value that is set defines a number of frames / microframes (High-
speed transfers), as follows:

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

Transfer
Type Speed Valid Values

(m) Interpretation

Interrupt Full 1 - 255 Polling interval is m frames.
High 1 - 16 Polling interval is 2(m-1) microframes.

Isochronous Full or High 1 - 16 Polling interval is 2(m-1)
frames/microframes.

Bulk Full or High 2 - 16 NAK Limit is 2(m-1) frames / microframes.
A value of 0 or 1 disables the NAK
timeout function.
270 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x1C RxType Sets the transaction protocol, speed, and peripheral endpoint number for the
host Rx endpoint. (Index register set to select Endpoints 1 – 5). There is an
RxType register for each configured Rx endpoint (except Endpoint 0, which
has its own Type0 register at 0x1A).

R/W RO 0x00

7:6 Speed Operating speed of the target device:
00: Unused (If selected, the target will be

assumed to be using the same connection
speed as the core.)

01: High speed
10: Full speed
11: Reserved

5:4 Protocol The CPU should set this to select the required
protocol for the Tx endpoint:

00: Control
01: Isochronous
10: Bulk
11: Interrupt

3:0 Target
Endpoint
Number

The CPU should set this value to the endpoint
number contained in the Rx endpoint descriptor
returned to the USB controller during device
enumeration.

0x1D Rx
Interval

For Interrupt and Isochronous transfers, RxInterval defines the polling
interval for the currently-selected Rx endpoint. For Bulk endpoints, this
register sets the number of frames/microframes after which the endpoint
should timeout on receiving a stream of NAK responses. There is a
RxInterval register for each configured Rx endpoint (except Endpoint 0).

R/W RO 0x00

7:0 The value that is set defines a number of frames / microframes (High-
speed transfers), as follows:

0x1E Unused, always returns 0.

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

Transfer
Type Speed Valid Values

(m) Interpretation

Interrupt Full 1 - 255 Polling interval is m frames.
High 1 - 16 Polling interval is 2(m-1) microframes.

Isochronous Full or High 1 - 16 Polling interval is 2(m-1)
frames/microframes.

Bulk Full or High 2 - 16 NAK Limit is 2(m-1) frames / microframes.
A value of 0 or 1 disables the NAK
timeout function.
www.ubicom.com 271

IP51xx Data Sheet – March 28, 2007
0x1F Config
Data

Returns details of core configuration. (Index register set to select
Endpoint 0.)

RO RO Configu-
ration

Depen-
dent

7 MPRxE Set to 1 when automatic amalgamation of bulk
packets is selected.

6 MPTxE Set to 1 when automatic splitting of bulk packets is
selected.

5 BigEndian Set to 1 when Big Endian ordering is selected.
4 HBRxE Set to 1 when High-bandwidth Rx ISO Endpoint

Support is selected.
3 HBTxE Set to 1 when High-bandwidth Tx ISO Endpoint

Support is selected.
2 DynFIFO

Sizing
Set to 1 when Dynamic FIFO Sizing option is
selected.

1 SoftConE Set to 1 when Soft Connect/Disconnect option is
selected.

0 UTMI
DataWidth

Indicates selected UTMI+ data width:
1: 16 bits
0: 8 bits

0x1F FIFO
Size

Returns the sizes of the FIFOs associated with the selected additional Tx
and Rx endpoints. Values 3 – 13 correspond to a FIFO size of 2n bytes
(8 – 8192 bytes). If an endpoint has not been configured, a value of 0 will be
displayed. Where the Tx and Rx endpoints share the same FIFO, the Rx
FIFO size will be encoded as 0xF.
Note: This register has this interpretation only when the Index register is set
to select one of Endpoints 1 – 5 and Dynamic FIFO Sizing is not selected. It
has a special interpretation when the Index register is set to select Endpoint
0 (see ConffigData above). The result returned is not valid where Dynamic
FIFO Sizing is used.

RO RO Configu-
ration

Depen-
dent

7:4 Rx FIFO Size Size of the Rx FIFO for the selected Rx endpoint.
3:0 Tx FIFO Size Size of the Tx FIFO for the selected Tx endpoint.

Table 7-37 USB Port Blocking Region: Indexed registers – Host mode (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
272 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Table 7-38 USB Port Blocking Region Definitions: FIFOs

Offset Register
Name Description

0x20-
0x37

FIFOs This address range provides 16 addresses for CPU access to the FIFOs for each endpoint. Writing to
these addresses loads data into the TxFIFO for the corresponding endpoint. Reading from these
addresses unloads data from the RxFIFO for the corresponding endpoint.
The FIFOs are located on 32-bit double-word boundaries (Endpoint 0 at 0x20, Endpoint 1 at
0x24 ... Endpoint 5 at 0x34).
Notes:
1. Transfers to and from FIFOs may be 8-bit, 16-bit, or 32-bit as required, and any combination of

access is allowed, provided that the data accessed is contiguous. However, all the transfers
associated with one packet must be of the same width so that the data is consistently byte-,
word-, or double-word-aligned. The last transfer may, however, contain fewer bytes than the
previous transfers in order to complete an odd-byte or odd-word transfer.

2. Depending on the size of the FIFO and the expected maximum packet size, the FIFOs support
either single-packet or double-packet buffering. However, burst writing of multiple packets is not
supported, since flags need to be set after each packet is written.

3. Following a STALL response or a Tx Strike Out error on Endpoint 1 – 5, the associated FIFO is
completely flushed.
www.ubicom.com 273

IP51xx Data Sheet – March 28, 2007
Table 7-39 USB Port Blocking Region: Device Control, Dynamic FIFO, Version & Vendor Registers

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

0x60 DevCtl Device Control register. 0x80
7 Peripheral

Device
This read-only bit indicates whether the USB
controller is operating as the Host device or the
Peripheral device. Valid only while a session is in
progress.
Note: If the core is in Force_Host mode (i.e. a session
has been started with Testmode[7] = 1), this bit will
indicate the state of the HOSTDISCON input signal
from the PHY.

RO R/W

1: Peripheral device
0: Host device

6 FSDev This read-only bit is set when a Full-speed or High-
speed device has been detected being connected to
the port. (High-speed devices are distinguished from
full-speed by checking for high-speed chirps when the
device is reset.) Valid only in Host mode.

RO R/W

5 Unused, always returns 0. RO RO
4:3 VBus[1:0] These read-only bits encode the current VBus level

as follows:
RO R/W

00: Below SessionEnd
01: Above SessionEnd, below AValid
10: Above AValid, below VBusValid
11: Above VBusValid

2 Host Mode This read-only bit is set when the USB controller is
acting as a Host.

RO R/W

1 Unused, always returns 0. RO RO
0 Session When operating as a Host device, this bit is set or

cleared by the CPU to start or end a session. When
operating as a Peripheral device, this bit is set /
cleared by the USB controller when a session starts /
ends.

R/W R/W

0x61 Unused
0x62 TxFIFOsz

Used only if Dynamic FIFO sizing option is selected. Otherwise returns 0.

R/W RO 0x00
0x63 RxFIFOsz R/W RO 0x00
0x64-
0x65

TxFIFO
add

R/W RO 0x0000

0x66-
0x67

RxFIFO
add

R/W RO 0x0000
274 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x68-
0x6B

VControl VControl is a UTMI+ PHY Vendor register that may optionally be included in
the core when the core is configured. Its size is also configurable and may be
up to 32 bits. The structure of the register is up to the system designer,
although users should note that the UTMI+ specification defines a 4-bit
VControl register.
Notes:
1. If a register of more than 8 bits is specified, any write must be made to

the entire register, using either a 16-bit or a 32-bit write as appropriate.
Writes to individual bytes are not supported.

2. The latency for the write (as measured between the positive edge of
CLK at the end of the AHB write cycle and the positive edge of XCLK
when the UTMI+ PHY VControl register is loaded) will be between Hc +
3Xc and Hc + 4Xc, where Hc is a cycle of CLK and Xc is a cycle of
XCLK. The minimum period between successive writes to the core’s
VControl, register must therefore be Hc + 4Xc to ensure that the value
is not corrupted while it is being synchronized to the XCLK domain.

WO WO Configu-
ration

Depen-
dent

0x68-
0x6B

VStatus VStatus is a UTMI+ PHY Vendor register that may optionally be included in
the core when the core is configured. Its size is also configurable and may be
up to 32 bits. The structure of the register is up to the system designer,
although users should note that the UTMI+ specification defines an 8-bit
VStatus register.
Notes:
1. The VSTATUS input bus is sampled once every 6 XCLK cycles.
2. The latency between the VSTATUS input bus from the PHY changing

and the new value being read from the VStatus register (measured to
the positive edge of CLK at the end of the AHB read cycle) will be
between 2Hc + Xc and 3Hc + 6Xc, where Hc is a cycle of CLK and Xc
is a cycle of XCLK.

RO RO Configu-
ration

Depen-
dent

0x6C-
0x6D

HWVers Hardware Version Number Register RO RO Version
Depen-

dent
7 RC Set to 1 if RTL is used from a Release Candidate

rather than from a full release of the core.
6:2 xx Major Version Number. Range 0 – 31 (0x00 – 0x1F).
1:0
15:8

yyy
1:0 are MSB,
15:8 are LSB)

Minor Version Number. Range 0 – 999
(0x000 – 0x3E7).

0x6E-
0x6F

Unused

Table 7-39 USB Port Blocking Region: Device Control, Dynamic FIFO, Version & Vendor Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 275

IP51xx Data Sheet – March 28, 2007
Table 7-40 USB Port Blocking Region: Target Address Registers

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value

0x80+
8*n

TxFunc
Addr

TxFuncAddr and RxFuncAddr record the address of the target function that
is to be accessed through the associated endpoint (EPn). TxFuncAddr must
be defined for each Tx endpoint that is used; RxFuncAddr must be defined
for each Rx endpoint that is used. Both TxFuncAddr and RxFuncAddr must
be defined for Endpoint 0. These registers (together with the Tx/RxHubAddr
and Tx/RxHubPort registers) allow the allocation of multiple devices to the
USB controller’s endpoints.

0x00

6:0 TxFuncAddr Address of Target Function
0x81+

8*n
Unused, always returns 0.

0x82+
8*n

TxHub
Addr

TxHubAddr and RxHubAddr need to be written only when a Full- or Low-
speed device is connected to Tx/Rx Endpoint EPn via a high-speed USB hub
which carries out the necessary transaction translation to convert between
High-speed transmission and Full- / Low-speed transmission.
If Endpoint 0 is connected to a hub, then both TxHubAddr and RxHubAddr
must be defined for Endpoint 0.

0x00

7 Multiple
Translators

This bit should record whether the hub has multiple
transaction translators:

1: Multiple transaction translators
0: Single transaction translator

6:0 TxHub Addr The address of this USB hub.
0x83+

8*n
TxHub
Port

TxHubPort and RxHubPort need to be written where a Full- or Low-speed
device is connected to Tx Endpoint EPn via a high-speed USB hub which
carries out the necessary transaction translation.
If Endpoint 0 is connected to a hub, then both TxHubPort and RxHubPort
need to be defined for Endpoint 0.

0x00

6:0 TxHub Port The port of the USB hub through which the target
associated with this endpoint is accessed.

0x84+
8*n

RxFunc
Addr

TxFuncAddr and RxFuncAddr records the address of the target function that
is to be accessed through the associated endpoint (EPn). TxFuncAddr must
be defined for each Tx endpoint that is used; RxFuncAddr must be defined
for each Rx endpoint that is used. Both TxFuncAddr and RxFuncAddr must
be defined for Endpoint 0. These registers (together with the Tx/RxHubAddr
and Tx/RxHubPort registers) allow the allocation of multiple devices to the
USB controller’s endpoints.

0x00

6:0 RxFunc Addr Address of Target Function
0x85+

8*n
Unused, always returns 0.
276 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
0x86+
8*n

RxHub
Addr

TxHubAddr and RxHubAddr need to be written only when a Full- or Low-
speed device is connected to Rx Endpoint EPn via a high-speed USB hub
which carries out the necessary transaction translation to convert between
High-speed transmission and Full- / Low-speed transmission.
If Endpoint 0 is connected to a hub, then both TxHubAddr and RxHubAddr
must be defined for Endpoint 0.

0x00

7 Multiple
Translators

This bit should record whether the hub has multiple
transaction translators:

1: Multiple transaction translators
0: Single transaction translator

6:0 TxHub Addr The address of this USB hub.
0x87+

8*n
RxHub

Port
TxHubPort and RxHubPort need to be written where a Full- or Low-speed
device is connected to Tx/Rx Endpoint EPn via a high-speed USB hub which
carries out the necessary transaction translation.
If Endpoint 0 is connected to a hub, then both TxHubPort and RxHubPort
need to be defined for Endpoint 0.

0x00

6:0 RxHub Port The port of the USB hub through which the target
associated with this endpoint is accessed.

Table 7-40 USB Port Blocking Region: Target Address Registers (continued)

Offset Register
Name Bits Field Name Description CPU

Access
USB

Access
Reset
Value
www.ubicom.com 277

IP51xx Data Sheet – March 28, 2007
8.0 Electrical Specifications

8.1 Absolute Maximum Ratings
Absolute Maximum Ratings, beyond which permanent damage may occur. Correct operation not guaranteed outside of
DC Specifications listed below.

Parameter Min Typ Max Units Conditions
Ambient temperature under bias -40 125 ºC

Storage temperature -65 150 ºC

Voltage on VDD_D, VDD_PLLDDR,
VDD_PLLCG, and VDDU_P with respect to
VSS

-0.3 1.5 V

Voltage on VDD_IO, VDDG, VDDH,
VDDG_RC, VDDH_RC, VDDF_PD,
VDDU, and VDDF with respect to VSS

-0.3 4.0 V

Input voltage on Port A-E, I pins, RSTN,
TEST0, TEST1, TEST2, TSSN, TSCK, and
TSI pins

-0.3 5.7 V

Input voltage on USB2_N, USB2_P, and
USB2_VBUS pins

-0.3 5.25 V

Input voltage on Port F -0.3 VDDF +
0.3

V

Input voltage on Ports G and H, and on
DDR_CAL, DDR_CLK,DDR_CLKN,
DDR_CLKFB, DDR_CLKFBN, and
DDR_ODT pins

-0.3 VDDG/
H + 0.3

V

Input voltage on DDRH_VREF,
DDRG_VREF

-0.3 VDDG/
H

V These pins should normally be
at half the VDDG/H voltage.

Input voltage on PF_VREF -0.3 VDDF V This pin should normally be at
half the VDDF voltage.

Output voltage on Ports A-E, I pins, TSO
pin.

-0.3 4.5 V

Output voltage on all other output pins -0.3 Supply
for that
pin +
0.3

V

278 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
8.2 DC Specifications
Operating Temperature as shown in Section 10.0, except where otherwise noted.

Symbol Parameter Min Typ Max Units Conditions
VDD_D =
VDD_PLLDDR =
VDD_PLLCG =
VDDU_P

Supply Voltages (Digital Core,
PLLs, USB PHY PLL)

See Note 2.

1.16 1.28 V IP5160U: 0 to 70ºC, 270 MHz
max. IP5160U-I: -40 to 85ºC with
a heat sink, 270 MHz max.

1.30 1.40 IP5170U: 0 to 70ºC,
350 MHz max with a heat sink.

VDDG
(DDR2 mode) =
VDDH
(DDR2 mode)

Supply Voltage for DDR (ports
G and H), when in DDR2 mode

1.7 1.8 1.9 V

VDDF
(RGMII mode) =
VDDG
(DDR1 mode) =
VDDG_RC =
VDDH
(DDR1 mode) =
VDDH_RC

Supply Voltages for RGMII,
DDR1, DDR receivers

2.3 2.5 2.7 V

VDD_IO =
VDDF
(GPIO, RMII, or
MII mode) =
VDDF_PD =
VDDU

Supply Voltages for GPIOs and
for USB port, and for VDDF
supply when using F port in
GPIO, RMII, or MII mode.

3.0 3.3 3.6 V Supplies should be powered up
from highest voltage to lowest
voltage, and powered down from
lowest to highest (because there
is an internal diode from VDD_D
to VDD_IO).

Idd12 Supply Current, Active: All
1.2V supplies

750 1000 mA Vdd = 1.23V for Typ, 1.28V for
Max, Core = 270 MHz,
Typical Router Gateway

Idd25 Supply Current, Active: All
2.5V supplies

246 304 mA Vdd = 2.5V for Typ, 2.7V for Max
Typical Router Gateway

Idd33 Supply Current, Active: All
3.3V supplies

57 124 mA Vdd = 3.3V for Typ, 3.6V for Max
Typical Router Gateway

DDRG_VREF Reference Input voltage on
DDRG_VREF

0.49x
VDDG

0.50x
VDDG

0.51x
VDDG

V DDR1 and DDR2. Peak to peak
AC noise on DDRx_VREF may
not exceed ±2% of DDRx_VREF
(DC).

DDRH_VREF Reference Input voltage on
DDRH_VREF

0.49x
VDDH

0.50x
VDDH

0.51x
VDDH

V

PF_VREF Reference Input Voltage on
PF_VREF

0.49x
VDDF

0.50x
VDDF

0.51x
VDDF

V Peak to peak AC noise on
PF_VREF may not exceed ±2%
of PF_VREF (DC).
www.ubicom.com 279

IP51xx Data Sheet – March 28, 2007
Vih

Input high voltage: Port A-E, I
pins, RSTN, TSSN, TSCK, and
TSI pins

2.0 5.5 V VDD_IO = 3.0 - 3.6V

DC Input high voltage: Port F in
GPIO mode

2.0 VDDF
+0.3

V VDDF = 3.0 - 3.6V

AC Input high voltage: Port F in
RGMII mode

PF_
VREF
+ 0.2

V VDDF = 2.3 - 2.7V

DC Input high voltage: Port F in
RGMII mode

1.7 VDDF
+0.3

V VDDF = 2.3 - 2.7V

DC Input high voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR1 mode

DDRG
/H_

VREF
+0.15

VDDG
/H

+ 0.3

V VDDG = VDDH = 2.3 - 2.7V

AC Input high voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR1 mode

DDRG
/H_

VREF
+ 0.31

- V VDDG = VDDH = 2.3 - 2.7V

DC Input high voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR2 mode

DDRG
/H_

VREF
+

0.125

VDDG
/H

+ 0.3

V VDDG = VDDH = 1.7 - 1.9V

AC Input high voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR2 mode

DDRG
/H_

VREF
+ 0.25

V VDDG = VDDH = 1.7 - 1.9V

Input high voltage:
USB2_VBUS pin

4.4 5.25 V This pin must be above the
minimum Vih for normal
operation (host mode).

Symbol Parameter Min Typ Max Units Conditions
280 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
Vil

Input low voltage: Port A-E, I
pins, RSTN, TSSN, TSCK,
TSI, and TEST0, TEST1,
TEST2 pins, and Port F in
GPIO with VDDF = 3.0-3.6V

-0.3 0.8 V

DC Input low voltage: Port F, in
RGMII mode

-0.3 0.7 V VDDF = 2.3 - 2.7V

AC Input low voltage: Port F in
RGMII mode

- PF_
VREF
- 0.2

V VDDF = 2.3 - 2.7V

DC Input low voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR1 mode

-0.3 VDDG
/H_

VREF
- 0.15

V VDDG = VDDH = 2.3-2.7V

AC Input low voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR1 mode

- VDDG
/H_

VREF
- 0.31

V VDDG = VDDH = 2.3-2.7V

DC Input low voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR2 mode

-0.3 VDDG
/H_

VREF
-

0.125

V VDDG = VDDH = 1.7-1.9V

AC Input low voltage: Ports G
and H, and DDR_CLKFB,
DDR_CLKFBN in DDR2 mode

- VDDG
/H_

VREF
- 0.25

V VDDG = VDDH = 1.7-1.9V

Input low voltage: USB2_ID pin 0.4 V This pin must be below the
maximum Vil for normal
operation (host mode).

Ioh

Output high current: Ports A, B,
C, D, E, I, except PB18. Also
includes TSO pin.

8 22 mA Voh = 2.4V,
VDD_IO = VDDF = 3.0 - 3.6V.

Output high current: PB18 pin 12 29 mA
Output high current: Port F in
GPIO mode

8 mA

Output high current: Port F,
RGMII mode

8 mA Voh = 1.8V,
VDDF = 2.3 - 2.7V

Output high current: Ports G, H,
and DDR_CLK, DDR_CLKN
pins (DDR1)

8 mA Voh = 1.8V,
VDDG/VDDH = 2.3 - 2.7V

Output high current: Ports G, H,
and DDR_CLK, DDR_CLKN
pins (DDR2)

13 mA Voh = 1.0V,
VDDG/VDDH = 1.7 - 1.9V

Symbol Parameter Min Typ Max Units Conditions
www.ubicom.com 281

IP51xx Data Sheet – March 28, 2007
Note 1: Data in the Typical column is at 1.23/1.8/2.5/3.3V, 25ºC, unless otherwise stated.

Note 2: The designer must ensure that the supply voltage on the balls of the device is always above the minimum
operating voltage. The typical voltage regulator output voltage should be above the midpoint between the above min
and max voltages, to allow for voltage drop on the board’s traces between the regulator output and the balls of the
device, even when the device is running at full speed.

Note 3: These pins have an internal active pullup to a threshold drop below VDD_IO. The pullup = 39K ohms min, 55K
ohms typ, 85K ohms max.

Note 4: These pins have an internal active pulldown to a threshold drop above VSS. The pulldown = 45K ohms min, 93K
ohms typ, 198K ohms max.

Iol

Output low current: Ports A, B,
C, D, E, I, except PB18. Also
includes TSO pin.

8 15 mA Vol = 0.4V, VDD_IO = VDDF =
3.0-3.6V

Output low current: PB18 pin 12 23 mA
Output low current: Port F in
GPIO mode

8 mA

Output low current: Port F,
RGMII mode

8 mA Vol = 0.4V, VDDF = 2.3 - 2.7V

Output low current: Ports G, H,
and DDR_CLK, DDR_CLKN
pins (DDR1)

8 mA Vol = 0.35V, VDDG/VDDH =
2.3-2.7V

Output low current: Ports G, H,
and DDR_CLK, DDR_CLKN
pins (DDR2)

13 mA Vol = 0.62V, VDDG/VDDH =
1.7-1.9V

Ileak

Input leakage current: Port A-
E,I pins in input mode, and tri-
stated TSO pin

-10 10 µA Pins held at 0V or 5.5V. TSO
measured while TSSN= high

Port F, PF_VREF pins -10 10 µA Pins held at 0V or VDDF
Ports G, H, DDR_CLK, CLKN,
CLKFB, CLKFBN, ODT,
DDRG_VREF, DDRH_VREF,
pins

-10 10 µA Pins held at 0V or VDDG/H

Input leakage current: RSTN,
TSSN, TSI pins

-110 -25 µA Inputs held at 0V. See Note 3.
-10 10 µA Inputs held at 5.5V. See Note 3.

Input leakage current: TSCK,
TEST0, TEST1, TEST2 pins

-10 10 µA Inputs held at 0V. See Note 4.
10 140 µA Inputs held at 5.5V. See Note 4.

USB2_N, USB2_P pins -10 500 µA Pin held at 0V or VDDU.
USB2_VBUS pin -10 500 µA Pin held at 0V or 3.6V.
USB2_ID pin -10 10 µA Pin held at 0V.
DDR_CAL pin -10 10 µA Input held at 0V

or VDDG / VDDH

Symbol Parameter Min Typ Max Units Conditions
282 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
8.3 AC Specifications
Operating Temperature as shown in Section 10.0, except where otherwise noted.

Note: In this table, # indicates an active low signal.

Function Symbol Parameter Min Typ Max Units Conditions

System

fCORE Core Frequency
(execution of instructions from
on-chip memory)

270 MHz IP5160

350 MHz IP5170

fPLL Frequency into Core PLL 2 12 MHz

fXTAL Crystal frequency on
OSC_IN / OSC_OUT

12 12 12 MHz Crystal with ±100ppm
rating

tVdd VDD_D rise time to ensure
Power-On reset

10 ms Must be > 1V within
10ms of power on when
relying on Power-On
reset.

PLL (core and I/O) stabilization
time

1000 cycles Cycles into PLL (after
reference clock divider)

PLL specifications: See Figure 3-4.

tRST External Reset Pulse 1 us On RSTN pin

tRHO Reset hold off time 50 150 ms Time after deassertion
of reset until internal
reset released. Allows
for full crystal startup.

Crystal startup time 50 ms

fDDR DDR1 and DDR2 frequency 120 200 MHz

MII on
E or I port

fMII MII frequency 2.5 25 MHz

tMRXS RXD, RX_DV, RX_ER setup to
RX_CLK rising

10 ns

tMRXH RXD, RX_DV, RX_ER hold
from RX_CLK rising

10 ns

tMTXD TX_ER, TX_EN, TXD from
TX_CLK rising

0 25 ns

MII on
F port

fMII50 MII frequency for F port 2.5 50 MHz

tMRXS50 RXD, RX_DV, RX_ER setup to
RX_CLK rising

3 ns

tMRXH50 RXD, RX_DV, RX_ER hold
from RX_CLK rising

2 ns

tMTXD50 TX_ER, TX_EN, TXD from
TX_CLK rising

0 9 ns

RMII,
Measure all
ACs at 50%

levels.

tRMRXS RXD, CRS_DV, RX_ER setup
to REF_CLK rising

4 ns

tRMRXH RXD, CRS_DV, RX_ER hold
from REF_CLK rising

2 ns

tRMTXD TX_EN, TXD from REF_CLK
rising

0 12 ns
www.ubicom.com 283

IP51xx Data Sheet – March 28, 2007
Note A1: The relevant signals and active clock edge for the Serdes depend on the current configuration. These timings
are relevant for modes that use an externally supplied clock.

RGMII

tRGM-
RXS

RXD, RX_CTL setup to
RX_CLK rising and falling

1 ns

tRGM-
RXH

RXD, RX_CTL hold from
RX_CLK rising and falling

1 ns

tRGM-
TXD

TXD, TX_CTL to TX_CLK_O
output skew

-0.5 0.5 ns

Serdes

See Note
A1.

fIO I/O PLL output clock frequency
(into Serdes divider)

250 MHz

fSDCK Serdes internal (after Serdes
divider) clock rate

100 MHz Core clock must be
faster.

fSDPCK Serdes pin clock rate 0 25 MHz This must be at least 4
times slower than
tSDCK.

tEDS Input data setup to active edge
of clock

8 ns

tEDH Input data hold from active
edge of clock

8 ns

tEDD Output data from active edge
of clock

20 ns

PCI

tPCIS AD, DEVSEL#, PERR#,
STOP#, SERR#, TRDY#,
FRAME#, IRDY#, PAR#, CBE
setup to CLK rising

7 ns

REQ0 and REQ1 setup to CLK
rising

12 ns

tPCIH AD, DEVSEL#, PERR#,
STOP#, SERR#, TRDY#,
FRAME#, IRDY#, PAR#, CBE,
REQ hold from CLK rising

0 ns

tPCID AD, PERR#, STOP#, SERR#,
TRDY#, FRAME#, IRDY#,
PAR#, CBE signals valid from
CLK rising

2 11 ns

GNT0 and GNT1 from CLK
rising

2 12 ns

Function Symbol Parameter Min Typ Max Units Conditions
284 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
9.0 Package Dimensions
IP51xxU - 256 balls, 17x17x1.3 mm package, 1mm ball pitch.
www.ubicom.com 285

IP51xx Data Sheet – March 28, 2007
10.0 Part Numbering

Part Number Pins I/O Package
On-Chip

Program /
Data RAM

Max Core
Frequency Temperature Heat Sink

Required

IP5160U 256 150 BGA, Pb-Free,
RoHS compliant 192 KB 270 MHz 0ºC to +70ºC No

IP5160U-I 256 150 BGA, Pb-Free,
RoHS compliant 192 KB 270 MHz -40ºC to +85ºC Yes

IP5170U 256 150 BGA, Pb-Free,
RoHS compliant 192 KB 350 MHz 0ºC to +70ºC Yes

IP 5160 U - I

U = Unleaded (Pb-Free) RoHS compliant “Green” package

Device Number

Device Family

I = Industrial Temperature (-40ºC to +85ºC)
286 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
11.0 Revision History of This Document
Date Location Description of Change

3/28/07 Table 2-3 Added minor clarifications to terminology. Changed description for USB2_VBUS.

Table 2-4,
6-1, 7-19

Updated port width for Port I and USB Port. Removed FIFO sizes for Port I.

Table 2-11 Changed RAS to RAS_N.

Section 3.0 Updated Figure 3-4 and various clock frequency references throughout Section 3.0.

Table 3-3 Updated addressing for on-chip peripherals and on-chip SRAM.

Section 4.2 Changed first paragraph characterization of DSP instructions.

Section 4.2.1 Changed first sentence.

Section 4.5 Changed lsr instruction description.

Section 5.0 Added Programmer’s Reference (includes some material moved from Section 6.0).

Section 6.6
7.10.2.7

Removed references to Reverse MII.

Section 6.9.1 Removed references to USB FIFO sharing.

Table 7-9 Changed Security Control bits [2:1] definition.

Section 7.10.2 Updated MII / RMII register definitions.

Section 7.15.1.2 Changed bit definitions for USB Port Interrupt Set register.

Section 7.7.1.1 Changed bit definitions for Port A Flash Interrupt Status register.

Section 7.8.1.2 Changed TX_FIFO_WM definition.

Section 7.11.1.9,
7.11.1.11

Changed register field names.

Table 7-21 Removed references to MII Management (also removed all related tables).

Table 7-23 Changed definition for bits [9:8].

Section 7.15.1 Removed USB FIFO-related registers.

Sections 8.1,
8.2, and 8.3.

Updated electrical specifications.

11/15/06 Section 2.2 Added note to Table 2-3 recommending a 200 ohm resistor on the USB2_VBUS pin.

Section 2.2 Updated Table 2-3 values.

Section 3.10 Added Figure 3-4.

Sections 6.4,
6.5.1, 7.10.2.7

Changed text.

Sections
7.15.1.1,
7.15.1.2

Updated bit definitions.

Section 8.2, 8.3 Updated DC Specifications and AC Specifications.
www.ubicom.com 287

IP51xx Data Sheet – March 28, 2007
10/01/06 Throughout Changed IP5160 to IP51xx when referring to both IP5160 and IP5170.

Section 1.0, 10.0 Added part numbers for new parts IP5160U-I and IP5170.

Section 3.10, 3.9 Updated parameter values. Added paragraph above Figure 3-3.

Section 4.3, 4.5 Expanded instruction descriptions.

Section 6.2.3 Added paragraph at end of section.

Section 8.2, 8.3 Updated DC Specifications and AC Specifications.

7/31/06 Throughout Changed IP 5160 CPU frequency to 270 MIPS.

Section 8.2, 8.3 Updated DC Specifications and AC Characteristics.

6/27/06 Section 4.0 Updated entire Instruction Set section.

Section 3.9 Updated Crystal Oscillator resistor and capacitor values.

5/31/06 Section 7.5.5 Updated Security Module register definitions.

Section 6.10 Updated Debug Interface Host Command definitions.

5/25/06 Section 6.0 Refined interface descriptions — removed implementation details.

Section 7.0 Refined register maps — removed unimplemented registers and fields.

Section 10.0 Removed non-green part numbers.

Section 7.15 Updated USB register definitions. Changed blocking registers to big-endian.

Last page Updated Ubicom address and phone numbers.

4/12/06 Throughout Corrected errors and misconceptions.

Section 6.10 Added Debug Port discussion.

3/29/06 Section 2.1 Changed pin assignments for A14 and A15.

3/20/06 Initial Release

Date Location Description of Change
288 www.ubicom.com

IP51xx Data Sheet – March 28, 2007
www.ubicom.com 289

Ubicom, Inc. develops and markets wireless network processor and
software platforms that enable all electronic devices to be connected to
each other – securely, cost-effectively and transparently. With
headquarters in Sunnyvale, California, Ubicom also has offices in Southern
California, as well as Netherlands, Taiwan and Hong Kong. For more
information, visit www.ubicom.com.

Copyright © 2007 Ubicom, Inc. All rights reserved. Ubicom, IP2000,
IP3023, StreamEngine, IP5160, IP5170, ipBlue, ipEthernet, ipFile,
ipHomePlug, ipIO, ipModule, ipOS, ipStack, ipUSBDevice, ipWeb,
ipWLANAccess Point, ipWLANStation, and Unity are trademarks of
Ubicom, Inc. All other trademarks are the property of their respective
holders.

IP5K-DDS-51xx-10

510 N. Pastoria Avenue
Sunnyvale, CA 94085

Tel: 408.789.2200
Fax:408.739.2427
Email:sales@ubicom.com
Web:www.ubicom.com

Sales and Technical Support Contact Information

For the latest contact and support information on IP devices, please visit the Ubicom Web site at www.ubicom.com. The
site contains technical literature, local sales contacts, tech support, and many other features.

The Products are not authorized for use in life support systems or under conditions where failure of the Product would
endanger the life or safety of the user, except when prior written approval is obtained from Ubicom, Inc. Ask your sales
representative for details.

	1.0 Product Highlights
	Contents
	2.0 Pin Definitions
	2.1 Pin Assignments (256-Pin BGA)
	2.2 Pin Descriptions
	2.3 I/O Ports Signal Maps

	3.0 System Architecture
	3.1 CPU Registers
	3.1.1 Per-Thread Registers
	3.1.2 Global Registers

	3.2 Addressing Model
	3.3 Instruction Model
	3.4 Fast Multithreading Context Switch
	3.5 Instruction Level Multithreading
	3.5.1 Scheduling Table (HRT)
	3.5.2 Scheduling Policies
	3.5.3 Schedulable Threads
	3.5.4 Hard Real-Time (HRT) Scheduling
	3.5.5 Round-Robin (NRT) Scheduling
	3.5.6 Suspend
	3.5.7 Startup

	3.6 Programming and Debugging Support
	3.7 Debugging Features
	3.7.1 Single-Step
	3.7.2 Breakpoints
	3.7.3 Write Address Trap
	3.7.4 Debug Mailboxes
	3.7.5 Execution Control

	3.8 Interrupts and Exceptions
	3.8.1 INT_STAT[0-1] Registers
	3.8.2 Interrupt Set and Clear Registers
	3.8.3 Thread Interrupt Mask
	3.8.4 Breakpoint and Trap Registers
	3.8.5 Forcing an Interrupt

	3.9 Crystal Oscillator
	3.10 Clock Circuitry
	3.11 Reset

	4.0 Instruction Set
	4.1 Operand Addressing
	4.2 Addressing Modes
	4.2.1 The Register Address Space

	4.3 Instruction Set Summary
	4.3.1 Arithmetic and Logical Operations
	4.3.2 DSP Operations
	4.3.3 Shift and Bit-Field Operations
	4.3.4 Single Bit Operations
	4.3.5 Data Movement And Extension Operations
	4.3.6 Program Control Operations

	4.4 Instruction Formats and Encoding
	4.5 Detailed Instruction Reference

	5.0 Programmer’s Reference
	5.1 IP51xx Startup and Initialization
	5.2 Interrupt Handling
	5.2.1 Context Switching
	5.2.2 Avoiding Software Context Switching
	5.2.3 Minimizing Interrupt Latency
	5.2.4 Creating a Traditional ISR Structure

	5.3 Using the Debug Port
	5.3.1 Debug Commands
	5.3.2 Debug Registers
	5.3.3 Debug Operations

	5.4 Data Cache
	5.4.1 Data Cache Policies
	5.4.2 Resetting the Data Cache
	5.4.3 Data Cache Control Registers
	5.4.4 Notes to the D-Cache Programmer
	5.4.5 Tracking D-Cache Performance

	5.5 Instruction Cache
	5.5.1 Instruction Cache Policies
	5.5.2 ICCR Requests and Invalidation
	5.5.3 Resetting the Instruction Cache
	5.5.4 Instruction Cache Control Registers
	5.5.5 Notes to the I-Cache Programmer
	5.5.6 Tracking I-Cache Performance

	5.6 Statistics Counters
	5.6.1 Notes to the Statistics Counters Programmer

	5.7 Flash Controller Programming Model
	5.7.1 FC Initialization
	5.7.2 Cache Reads
	5.7.3 Processor Read/Write/Erase Interface to External Flash
	5.7.4 FC_CMD Process
	5.7.5 FC_READ Process
	5.7.6 FC_WRITE Process
	5.7.7 SPI Interface Clocking
	5.7.8 System / Function Reset
	5.7.9 FC Function De-Selection

	5.8 DDR SDRAM Programming Model
	5.8.1 Enabling the DDR clock
	5.8.2 Disabling the DDR clock
	5.8.3 Calibrating the DDR I/Os
	5.8.4 Configuring the I/O Port for DDR Operation
	5.8.5 Initializing the DDR Controller
	5.8.6 Training the DDR DLLs (Delay Locked Loops)
	5.8.7 Configuring the DDR Read Response Watermark

	5.9 MII Controller Programming Model
	5.9.1 MII Controller Initialization

	5.10 PCI Controller Programming Model
	5.10.1 PCI Startup
	5.10.2 PCI Bus Reset
	5.10.3 PCI Idle State
	5.10.4 PCI Target Transactions
	5.10.5 PCI Master Transactions
	5.10.6 PCI Interrupts and Errors

	5.11 GMAC Programming Model
	5.11.1 GMAC Initialization

	5.12 USB Controller Programming Model
	5.12.1 USB Initialization
	5.12.2 USB Transactions

	5.13 On-Chip Memory Programming Model
	5.13.1 Initialization After System Reset
	5.13.2 Executing BIST/BISR to OCM
	5.13.3 Applying BIST Soft Repair to OCM
	5.13.4 Flushing the OCM Code Request Buffer

	5.14 Processor Programming Model
	5.14.1 Handling Serror and Aerror
	5.14.2 Handling Traps
	5.14.3 Memory Protection

	5.15 Security Block Programming Model
	5.15.1 Security Block Clock
	5.15.2 Enabling the Security Block Clock

	5.16 Clocks Programming Model
	5.17 Random Number Generator
	5.18 Reset
	5.18.1 Reset Sources
	5.18.2 Reset Output To External Devices
	5.18.3 I/O Function Resets
	5.18.4 Warm Reset
	5.18.5 Using Reset Reason Flags

	5.19 Programming Restrictions
	5.19.1 Cancellation Penalties
	5.19.2 Operations with Delayed Effect
	5.19.3 Explicitly Writing the CSR of a Running Thread
	5.19.4 Instruction Pipe Flushing and Thread Quiescence
	5.19.5 Transmit FIFO Occupancy Status
	5.19.6 Reading Write-Only Registers and Write-Only Fields
	5.19.7 Writing Read-only Registers and Read-only Fields
	5.19.8 Program Memory Access Instructions (IREAD/IWRITE/IERASE)
	5.19.9 Multiple Modifications of the Same Address Register in One Instruction
	5.19.10 Reading Instruction Counters
	5.19.11 Reading INT_STAT and MT_ACTIVE Following Interrupts
	5.19.12 Reading and Writing the PCs
	5.19.13 LEA and PDEC Instructions
	5.19.14 Writing Another Running Thread’s Address or Data Registers
	5.19.15 Operands Affected by Source Select
	5.19.16 Operands Affected by Destination Select
	5.19.17 Operands Covered by the DCAPT Write Address Trap
	5.19.18 Writing to Another Thread’s Registers
	5.19.19 Single-Stepping
	5.19.20 Writing the MT_TRAP_CAUSE Register
	5.19.21 Serror Traps
	5.19.22 Initialization of Address and Data Registers
	5.19.23 Performing a Hard Reset through the Debug Port
	5.19.24 Performing a Soft Reset of Only the External Memory Subsystem
	5.19.25 Sharing Code and Data within the Same On-Chip Memory Bank
	5.19.26 Writing Self-Modifying Code for the On-Chip Memory
	5.19.27 Dynamic Modification of the On-Chip Memory Bank Mask Register

	5.20 Programming Errata
	5.21 Writing Assembly Code
	5.21.1 Comments, Constants, and Symbols
	5.21.2 Directives
	5.21.3 Operators
	5.21.4 Assembly to C Calling Conventions
	5.21.5 Operand Qualifiers
	5.21.6 IP5K-Specific Reserved Words

	6.0 Peripherals
	6.1 Overview
	6.2 Shared Port Architecture
	6.2.1 Port Registers
	6.2.2 Interrupts
	6.2.3 FIFO Management

	6.3 External Flash Controller (FC)
	6.3.1 Cache Read Interface
	6.3.2 Port-Register Read / Write / Erase Interface
	6.3.3 Arbitration

	6.4 External DDR SDRAM Controller
	6.4.1 DDR SDRAM Controller Features

	6.5 Serializer/Deserializer (Serdes)
	6.5.1 Serdes TX/RX Buffers
	6.5.2 Serdes Configuration
	6.5.3 Protocol Modes
	6.5.4 USB
	6.5.5 UART
	6.5.6 SPI
	6.5.7 GPSI

	6.6 Media Independent Interface (MII)
	6.6.1 Receive Sequence
	6.6.2 Transmit Sequence

	6.7 PCI Interface
	6.7.1 PCI Interface Features
	6.7.2 PCI Bus Commands

	6.8 GMAC Interface
	6.9 High-Speed USB Interface
	6.9.1 USB Controller Features
	6.9.2 Operation as Host or Peripheral
	6.9.3 Support for Multiple Devices
	6.9.4 Throughput

	6.10 Debug Port

	7.0 Memory Reference
	7.1 Alphabetical List of Registers
	7.2 Per-Thread Registers
	7.2.1 CSR
	7.2.2 ROSR
	7.2.3 TRAP_CAUSE

	7.3 Global Registers
	7.3.1 CHIP_ID
	7.3.2 INT_STAT0
	7.3.3 INT_STAT1
	7.3.4 GLOBAL_CTRL
	7.3.5 DCAPT (Trap Address)
	7.3.6 Memory Protection

	7.4 HRT Tables
	7.5 On-Chip Peripherals
	7.5.1 OCP General Configuration
	7.5.2 Timer Registers
	7.5.3 True Random Number Generator
	7.5.4 Debug Port
	7.5.5 Security Module
	7.5.6 Instruction Cache Control Registers
	7.5.7 Data Cache Control Registers
	7.5.8 On-Chip Memory Control Registers
	7.5.9 Statistics Counters
	7.5.10 Memory Test Registers

	7.6 Per-Port Registers
	7.7 Port A Registers
	7.7.1 Port A Function 1 (Flash / INT / Clock)
	7.7.2 Port A Function 2 (GPIO / INT / Clock)
	7.7.3 Port A Function 3 (GPIO / INT)

	7.8 Port B Registers
	7.8.1 Port B Function 1 (PCI)

	7.9 Port D Registers
	7.9.1 Port D Function 1 (240 MHz Serdes)

	7.10 Port E Registers
	7.10.1 Port E Function 1 (250 MHz Serdes)
	7.10.2 Port E Function 3 (MII / RMII)

	7.11 Port F Registers
	7.11.1 Port F Function 1 (GMAC)

	7.12 Port G Registers
	7.12.1 Port G Function 1 (DDR SDRAM)

	7.13 Port H Registers
	7.13.1 Port H Function 1 (DDR SDRAM)

	7.14 Port I Registers
	7.14.1 Port I Function 3 (MII)

	7.15 USB Port Registers
	7.15.1 USB Port Function 1 (USB)

	8.0 Electrical Specifications
	8.1 Absolute Maximum Ratings
	8.2 DC Specifications
	8.3 AC Specifications

	9.0 Package Dimensions
	10.0 Part Numbering
	11.0 Revision History of This Document

